

KSC1845PTA Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number KSC1845PTA-DG

Manufacturer onsemi

Manufacturer Product Number KSC1845PTA

Description TRANS NPN 120V 0.05A T092-3

Detailed Description Bipolar (BJT) Transistor NPN 120 V 50 mA 110MHz 5

00 mW Through Hole TO-92-3

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
KSC1845PTA	onsemi
Series:	Product Status:
	Obsolete
Transistor Type:	Current - Collector (Ic) (Max):
NPN	50 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
120 V	300mV @ 1mA, 10mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
50nA (ICBO)	200 @ 1mA, 6V
Power - Max:	Frequency - Transition:
500 mW	110MHz
Operating Temperature:	Mounting Type:
150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-226-3, TO-92-3 (TO-226AA) Formed Leads	TO-92-3
Base Product Number:	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
FAR99	8541 21 0075

NPN Epitaxial Silicon Transistor

KSC1845

Features

- Audio Frequency Low-Noise Amplifier
- Complement to KSA992
- This is a Pb-Free Device

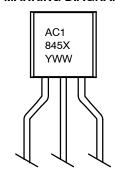
MAXIMUM RATINGS (Values are at $T_A = 25^{\circ}C$ unless otherwise noted.)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	120	V
V _{CEO}	Collector-Emitter Voltage	120	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current	50	mA
Ι _Β	Base Current	10	mA
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

(Values are at $T_A = 25^{\circ}C$ unless otherwise noted.) (Note 1)


Symbol	Parameter	Value	Unit
P_{D}	Power Dissipation	500	mW
	Derate Above 25°C	4	mW/°C
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	250	°C/W

^{1.} PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

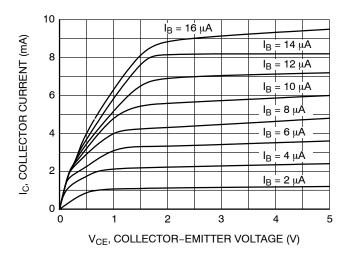
TO-92 3 4.83x4.76 LEADFORMED CASE 135AR

MARKING DIAGRAM

A = Assembly Code C1845 = Device Code X = F

YWW = Date Code

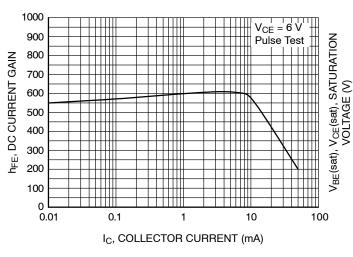
ORDERING INFORMATION


Device	Package	Shipping
KSC1845FTA	TO-92 3 LF (Pb-Free)	2000 / Fan-Fold

ELECTRICAL CHARACTERISTICS (Values are at $T_A = 25^{\circ}C$ unless otherwise noted.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_A = 0$	120	-	-	V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 1 mA, I _B = 0	120	-	-	V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$	5	-	-	V
I _{CBO}	Collector Cut-Off Current	V _{CB} = 120 V, I _E = 0	-	-	50	nA
I _{EBO}	Emitter Cut-Off Current	V _{EB} = 5 V, I _C = 0	-	-	50	nA
h _{FE1}	DC Current Gain	$V_{CE} = 6 \text{ V}, I_{C} = 0.1 \text{ mA}$	150	580	-	
h _{FE2}		V _{CE} = 6 V, I _C = 1 mA	300	450	600	
V _{BE} (on)	Base-Emitter On Voltage	$V_{CE} = 6 \text{ V}, I_{C} = 1 \text{ mA}$	0.55	0.59	0.65	V
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 10 mA, I _B = 1 mA	-	0.07	0.30	V
f _T	Current Gain Bandwidth Product	$V_{CE} = 6 \text{ V}, I_{C} = 1 \text{ mA}$	50	100	-	MHz
C _{ob}	Output Capacitance	$V_{CB} = 30 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$	-	1.6	2.5	pF
NF	Noise Figure	$V_{CE} = -5 \text{ V, } I_{C} = -1.0 \text{ mA,}$ $R_{S} = 100 \text{ k}\Omega, f = 1 \text{ kHz}$	-	7	-	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL PERFORMANCE CHARACTERISTICS

1.0 $I_B = 1.4 \mu A$ $I_{B}^{\prime} = 1.2 \, \mu A$ IC, COLLECTOR CURRENT (mA) $I_B = 1.0 \mu A$ 0.8 $I_B = 0.8 \mu A$ 0.6 $I_B = 0.6 \, \mu A$ $I_B = 0.4 \mu A$ 0.4 I_B = 0.2 μA 0.2 0 0 20 40 60 80 100 V_{CE}, COLLECTOR-EMITTER VOLTAGE (V)

Figure 1. Static Characteristic

Figure 2. Static Characteristic

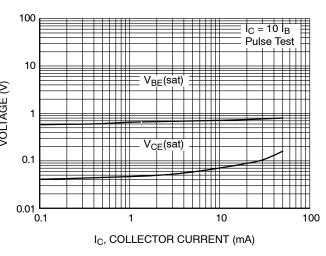
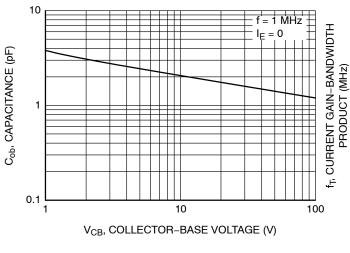



Figure 3. DC Current Gain

Figure 4. Base–Emitter Saturation Voltage and Collector–Emitter Saturation Voltage

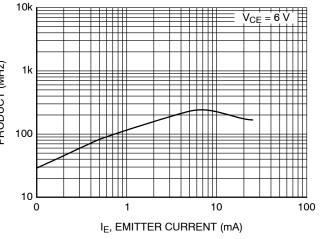
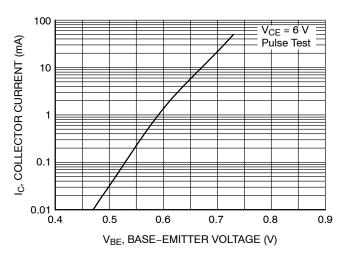



Figure 5. Collector Output Capacitance

Figure 6. Current Gain Bandwidth Product

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

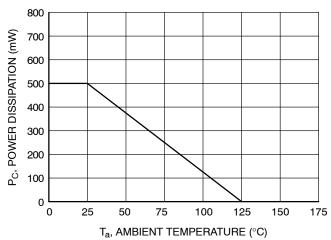
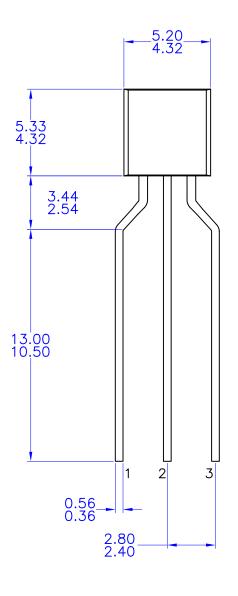
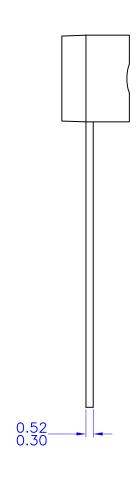


Figure 7. Collector Current vs. Base-Emitter Voltage

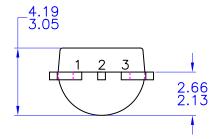
Figure 8. Power Derating


MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

TO-92 3 4.83x4.76 LEADFORMED

CASE 135AR ISSUE O


DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994

DOCUMENT NUMBER:	98AON13879G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 3 4.83X4.76 LEADFORMED		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com