

MC100EP14DTG Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MC100EP14DTG-DG

Manufacturer onsemi

Manufacturer Product Number MC100EP14DTG

Description IC CLK BUFFER 2:5 2GHZ 20TSSOP

Detailed Description Clock Fanout Buffer (Distribution), Multiplexer IC 2:

5 2 GHz 20-TSSOP (0.173", 4.40mm Width)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MC100EP14DTG	onsemi
Series:	Product Status:
100EP	Active
Type:	Number of Circuits:
Fanout Buffer (Distribution), Multiplexer	1
Ratio - Input:Output:	Differential - Input:Output:
2:5	Yes/Yes
Input:	Output:
ECL, HSTL, PECL	ECL, PECL
Frequency - Max:	Voltage - Supply:
2 GHz	3V ~ 5.5V
Operating Temperature:	Mounting Type:
-40°C ~ 85°C	Surface Mount
Package / Case:	Supplier Device Package:
20-TSSOP (0.173", 4.40mm Width)	20-TSSOP
Base Product Number:	
MC100	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

3.3V / 5V 1:5 Differential ECL/PECL/HSTL Clock Driver

Description

The MC100EP14 is a low skew 1–to–5 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The ECL/PECL input signals can be either differential or single–ended (if the $V_{\rm BB}$ output is used). HSTL inputs can be used when the LVEP14 is operating under PECL conditions.

The EP14 specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device.

To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew.

The common enable (\overline{EN}) is synchronous, outputs are enabled/disabled in the LOW state. This avoids a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock, therefore all associated specification limits are referenced to the negative edge of the clock input.

The VBB pin, an internally generated voltage supply, is available to this device only. For single–ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

Features

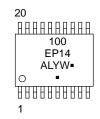
- 400 ps Typical Propagation Delay
- 100 ps Device-to-Device Skew
- 25 ps Within Device Skew
- Maximum Frequency > 2 GHz Typical
- The 100 Series Contains Temperature Compensation
- PECL and HSTL Mode:

 $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$

• NECL Mode:

 $V_{CC} = 0 \text{ V}$ with $V_{EE} = -3.0 \text{ V}$ to -5.5 V

- Open Input Default State
- These are Pb-Free Devices

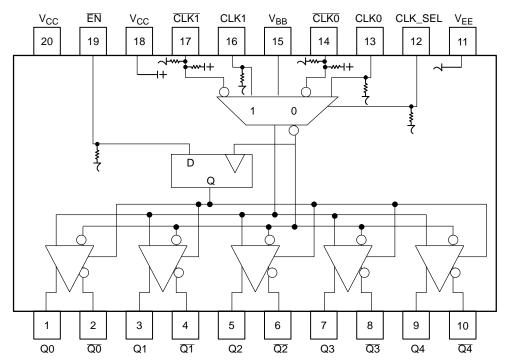

ON Semiconductor®

http://onsemi.com

TSSOP-20 DT SUFFIX CASE 948E

MARKING DIAGRAM*

A = Assembly Location


L = Wafer Lot
Y = Year
W = Work Week
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

^{*}For additional marking information, refer to Application Note AND8002/D.

WARNING: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. TSSOP-20 (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

Pin	Function
CLK0*, CLK0**	ECL/PECL/HSTL CLK Input
CLK1*, CLK1**	ECL/PECL/HSTL CLK Input
Q0:4, Q0:4	ECL/PECL Outputs
CLK_SEL*	ECL/PECL Active Clock Select Input
ĒN*	ECL Sync Enable
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply

Table 2. FUNCTION TABLE

CLK0	CLK1	CLK_SEL	EN	Q
L	X	L	L	L
X	Ĺ	H	Ĺ	Ĺ
X	H	H	L	H ! *

^{*} On next negative transition of CLK0 or CLK1

 $^{^{\}star}$ Pins will default low when left open. ** Pins will default to V $_{\rm CC}/2$ when left open.

Table 3. ATTRIBUTES

Characteristi	Value				
Internal Input Pulldown Resistor	75 kΩ				
Internal Input Pullup Resistor		37.5	5 kΩ		
ESD Protection	> 4 kV > 200 V > 2 kV				
Moisture Sensitivity, Indefinite Time (Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg		
	TSSOP-8	Level 1	Level 1		
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0	@ 0.125 in		
Transistor Count	357 Devices				
Meets or exceeds JEDEC Spec EIA/	JESD78 IC Latchup Test				

^{1.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-20 TSSOP-20	140 100	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-20	23 to 41	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 2)

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		45	55	65	48	58	68	52	62	72	mA
V _{OH}	Output HIGH Voltage (Note 3)		2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 3)		1305	1480	1605	1305	1480	1605	1305	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		2075		2420	2075		2420	2075		2420	mV
V_{IL}	Input LOW Voltage (Single-Ended)		1305		1675	1305		1675	1305		1675	mV
V _{BB}	Output Voltage Reference		1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)		1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}		D D	0.5 –150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to –2.2 V.
- 3. All loading with 50 Ω to V_{CC} 2.0 V.
- 4. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 6. 100EP DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 5)

				-40°C			25°C			85°C		
Symbol	Characteristic	Ī	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		45	55	65	48	58	68	52	62	72	mA
V _{OH}	Output HIGH Voltage (Note 6)		3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note 6)		3005	3180	3305	3005	3180	3305	3005	3180	3305	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		3775		4120	3775		4120	3775		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)		3005		3375	3005		3375	3005		3375	mV
V_{BB}	Output Voltage Reference		3475	3575	3675	3475	3575	3675	3475	3575	3675	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 7)		1.2		5.0	1.2		5.0	1.2		5.0	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}		D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 5. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V.
- 6. All loading with 50 Ω to V_{CC} 2.0 V_{CC} . V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 7. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 8)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	55	65	48	58	68	52	62	72	mA
V _{OH}	Output HIGH Voltage (Note 9)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 9)	-1995	-1820	-1695	-1995	-1820	-1695	-1995	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
V _{BB}	Output Reference Voltage	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 8. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 11)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OPP}	Output Voltage Amplitude @ 2 GHz (Figure 2)	440	540		420	520		380	480		GHz
t _{PLH}	Propagation Delay to Output Differential	275	330	400	275	375	450	280	380	480	ps
t _{skew}	Within–Device Skew Device–to–Device Skew (Note 12)		25 100	35 125		30 150	45 175		40 175	50 200	ps
t _s	Setup Time to CLK EN to CLK Hold Time EN to CLK	100 200	50 140		100 200	50 140		100 200	50 140		ps
t _{JITTER}	Cycle-to-Cycle Jitter (Figure 2)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Minimum Input Swing	150	800	1200	150	800	1200	150	800	1200	mV
t _r /t _f	Output Rise/Fall Time (20%-80%)	105	155	205	145	200	270	150	225	300	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{8.} Input and output parameters vary 1:1 with V_{CC}.

^{9.} All loading with 50 Ω to V_{CC} – 2.0 V.

^{10.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

^{11.} Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

^{12.} Skew is measured between outputs under identical transitions.

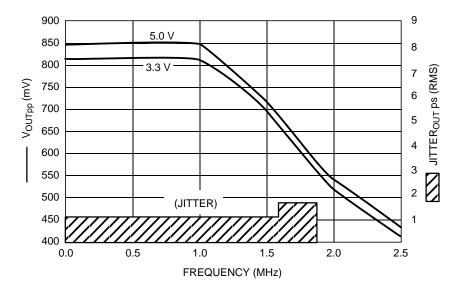


Figure 2. F_{max}/Jitter

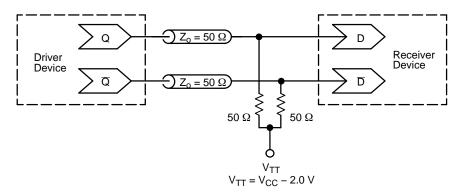


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100EP14DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC100EP14DTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

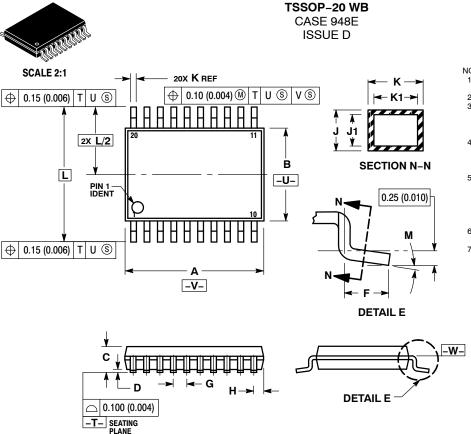
AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices


AND8066/D - Interfacing with ECLinPS

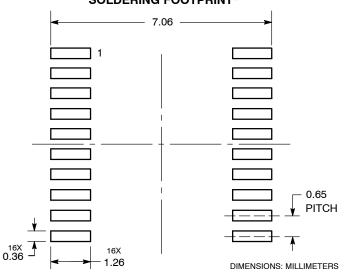
AND8090/D - AC Characteristics of ECL Devices

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

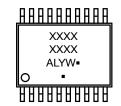
DATE 17 FEB 2016

NOTES:


- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE
- DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 TERMINAL NUMBERS ARE SHOWN FOR
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.


	MILLIN	IETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	6.40	6.60	0.252	0.260			
В	4.30	4.50	0.169	0.177			
С		1.20		0.047			
D	0.05	0.15	0.15 0.002				
F	0.50	0.75	0.020	0.030			
G	0.65	BSC	0.026 BSC				
Н	0.27	0.37	0.011	0.015			
J	0.09	0.20	0.004	0.008			
J1	0.09	0.16	0.004	0.006			
K	0.19	0.30	0.007	0.012			
K1	0.19	0.25	0.007	0.010			
L	6.40	BSC	0.252 BSC				
NA.	00	0.0	00	0.0			

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot

= Year

= Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com