

MC10EL34DG Datasheet

www.digi-electronics.com

DiGi Electronics Part Number

Manufacturer

Manufacturer Product Number

Description

Detailed Description

MC10EL34DG-DG

onsemi

MC10EL34DG

IC CLOCK GENERATOR 16SOIC

Clock Generator IC 1.1GHz 1 16-SOIC (0.154", 3.90m m Width)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MC10EL34DG	onsemi
Series:	Product Status:
10EL	Active
DiGi-Electronics Programmable:	Туре:
Not Verified	Clock Generator
PLL:	Input:
No	NECL, PECL
Output:	Number of Circuits:
ECL	1
Ratio - Input:Output:	Differential - Input:Output:
1:3	Yes/Yes
Frequency - Max:	Divider/Multiplier:
1.1GHz	Yes/No
Voltage - Supply:	Operating Temperature:
4.2V ~ 5.7V	-40°C ~ 85°C
Mounting Type:	Package / Case:
Surface Mount	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package:	Base Product Number:
16-SOIC	MC10EL34

Environmental & Export classification

RoHS Status:	Moisture Sen
ROHS3 Compliant	1 (Unlimited
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

Moisture Sensitivity Level (MSL): 1 (Unlimited) ECCN: EAR99

onsemi

5 V ECL ÷2, ÷4, ÷8 Clock Generation Chip

MC10EL34, MC100EL34

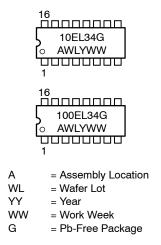
Description

The MC10/100EL34 is a low skew $\div 2$, $\div 4$, $\div 8$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 µF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The common enable $(\overline{\text{EN}})$ is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip–flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon startup, the internal flip-flops will attain a random state; the master reset (MR) input allows for the synchronization of the internal dividers, as well as multiple EL34s in a system.

The 100 Series contains temperature compensation.

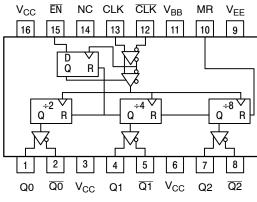

Features

- 50 ps Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- PECL Mode Operating Range:
 - $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
 - $V_{CC} = 0$ V with $V_{EE} = -4.2$ V to -5.7 V
- Internal Input 75 k Ω Pulldown Resistors on CLK(s), EN, and MR
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

SOIC-16 D SUFFIX CASE 751B-05

MARKING DIAGRAMS*

^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>.


ORDERING INFORMATION

Device	Package	Shipping
MC10EL34DG	SOIC-16 Pb-Free)	48 Units/Tube

DISCONTINUED (Note 1)

Device	Package	Shipping
MC100EL34DG	SOIC-16	48 Units/Tube
	Pb-Free)	

 DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on <u>www.onsemi.com</u>.

*All V_{CC} pins are tied together on the die.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagram and Pinout Assignment

Table 1. FUNCTION TABLE

CLK*	EN*	MR*	Function
Z 77	L	L	Divide
X	X	H	Hold Q _{0–3} Reset Q _{0–3}

*Pins will default low when left open.

Z = Low-to-High Transition

ZZ = High-to-Low Transition

Table 2. PIN DESCRIPTION

Pin	Function
CLK, CLK	ECL Diff Clock Inputs
EN	ECL Sync Enable
MR	ECL Master Reset
Q0, <u>Q0</u>	ECL Diff +2 Outputs
Q1, <u>Q1</u>	ECL Diff ÷4 Outputs
Q2, <u>Q2</u>	ECL Diff +8 Outputs
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

Table 3. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 ΚΩ
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model Charge Device Model	> 1 KV > 100 V > 2 KV
Moisture Sensitivity (Note 1)	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	191 Devices
Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup	o Test

1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 -6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-16	130 75	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-16	33 to 36	°C/W
T _{sol}	Wave Solder (Pb-Free)	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. 10EL SERIES PECL DC CHARACT	ERISTICS (V _{CC} = 5.0 V; V _{EE} = 0 V (Note 1))
--------------------------------------	---

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			39			39			39	mA
V _{OH}	Output HIGH Voltage (Note 2)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV
VIH	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3940		4280	mV
VIL	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
V_{BB}	Output Voltage Reference	3.57		3.7	3.65		3.75	3.69		3.81	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3)	3.0		4.6	3.0		4.6	3.0		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.3			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.06 V / -0.5 V.
Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 6. 10EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0 V; V_{EE} = -5.0 V (Note 1))

–40°C						25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			39			39			39	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
VIH	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV
VIL	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
V_{BB}	Output Voltage Reference	-1.43		-1.30	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3)	-2.0		-0.4	-2.0		-0.4	-2.0		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.3			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.06 V / -0.5 V.
Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			39			39			42	mA
V _{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.2		4.6	2.2		4.6	2.2		4.6	V
Ι _{ΙΗ}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.

V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			39			39			42	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-2.8		-0.4	-2.8		-0.4	-2.8		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
١ _{IL}	Input LOW Current	0.5			0.5			0.5			μA

Table 8. 100EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0 V; V_{EE} = -5.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

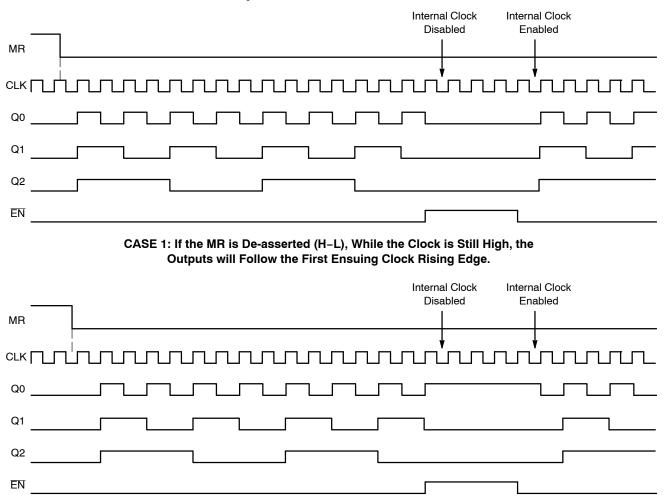
Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.
Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fmax	Maximum Toggle Frequency	1.1			1.1			1.1			GHz
t _{PLH} t _{PHL}	Propagation CLK to Q0 Delay to	960		1200	960		1200	970		1210	ps
	CLK to Q1,2 Output MR to Q	900 750		1140 1060	900 750		1140 1060	910 790		1150 1090	
t _{SKEW}	Within-Device Skew (Note 2)		100			100			100		ps
t JITTER	Cycle-to-Cycle Jitter		1.0			1.0			1.0		ps
t _S	Setup Time EN	400			400			400			ps
t _H	Hold Time EN	250			250			250			ps
t _{RR}	Set/Reset Recovery	400	200		400	200		400	200		ps
V _{PP}	Input Swing (Note 3)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	225		475	225		475	225		475	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. 10 Series: V_{EE} can vary +0.06 V / -0.5 V.

100 Series: V_{EE} can vary +0.8 V / -0.5 V.


2. Within-device skew is defined as identical transitions on similar paths through a device.

3. V_{PP}min is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ~40.

MC10EL34DG onsemi IC CLOCK GENERATOR 16SOIC

MC10EL34, MC100EL34

There are two distinct functional relationships between the Master Reset and Clock:

CASE 2: If the MR is De-asserted (H–L), After the Clock has Transitioned Low, the Outputs will Follow the Second Ensuing Clock Rising Edge.

Figure 2. Timing Diagrams

The \overline{EN} signal will "freeze" the internal divider flip-flops on the first falling edge of CLK after its assertion. The internal divider flip-flops will maintain their state during the freeze. The \overline{EN} is deasserted (LOW), and after the next falling edge of CLK, then the internal divider flip-flops will "unfreeze" and continue to their next state count with proper phase relationships.

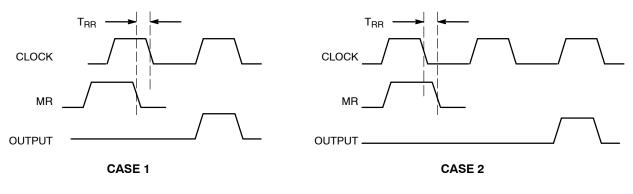
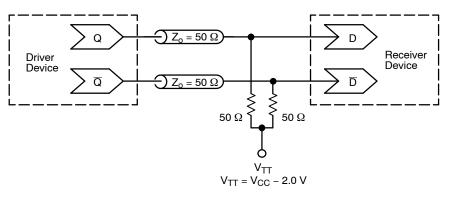
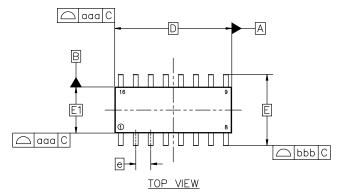



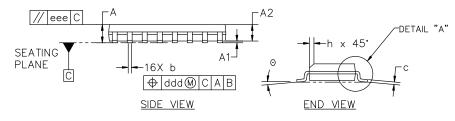
Figure 3. Reset Recovery Time

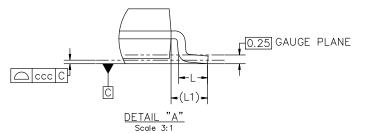
Resource Reference of Application Notes

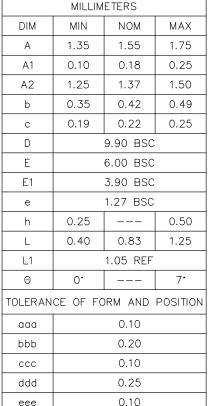
AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

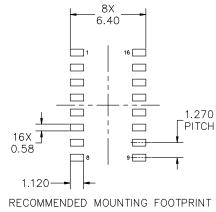
ECLinPS is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


PACKAGE DIMENSIONS


SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024


NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE & DIMENSION AT MAXIMUM MATERIAL CONDITION.

ECOMMENDED MOUNTING FOOTPRINT *For additional information on our PB-FREE Strategy and Soldering Details, PLEASE DOWNLOAD THE onsemi Soldering AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	PAGE 1 OF 2					

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

16	A	H	A.	- A	R	A	A	Æ
		XX)	XX	X	XX	XX	XX	G
		XX	XX)	XX	XX	XX)	XX	x
	0		A١	NĽ	YW	/W		
1	H	Н	Н	Н	Н	H	H	Ъ

XXXXX = Specific Device Code

= Assembly Location

- WL = Wafer Lot
- Y = Year

А

- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:		TYLE 4:	
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.		2.		2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	3. 4.	,	4.	
	EMITTER		CATHODE	т . 5.	COLLECTOR, #2		
5. 6.	BASE	5. 6.	NO CONNECTION	5. 6.	BASE, #2	6.	
0. 7.	COLLECTOR	0. 7.		7.	EMITTER, #2	7.	
8.	COLLECTOR		CATHODE	7. 8.		8.	
	BASE	0. 9.	CATHODE		COLLECTOR, #2		BASE, #4
	EMITTER		ANODE		BASE, #3		EMITTER, #4
	NO CONNECTION		NO CONNECTION		EMITTER. #3		BASE. #3
	EMITTER		CATHODE		COLLECTOR, #3		EMITTER, #3
	BASE		CATHODE		COLLECTOR, #4		BASE. #2
	COLLECTOR		NO CONNECTION		BASE, #4		EMITTER, #2
	EMITTER		ANODE		EMITTER. #4		BASE, #1
	COLLECTOR		CATHODE		COLLECTOR, #4		EMITTER, #1
10.	COLLECTOR	10.	CATTODE	10.	00LLL010N, #4	10.	LIVITTLN, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN. DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
	DRAIN, DTE #1	FIN 1. 2.	CATHODE		COMMON DRAIN (OUTPUT)		
2.	DRAIN, #1 DRAIN, #2	2.	CATHODE	2.			
3. 4.	DRAIN, #2		CATHODE		GATE P-CH		
4. 5.	DRAIN, #2 DRAIN, #3		CATHODE	4. 5.	COMMON DRAIN (OUTPUT)		
5. 6.	DRAIN, #3	J. 6.		5. 6.			
0. 7.	DRAIN, #3	0. 7.		0. 7.	COMMON DRAIN (OUTPUT)		
7. 8.	DRAIN, #4	8.	CATHODE	7. 8.			
0. 9.	GATE, #4	0. 9.	ANODE	9.			
9. 10.	SOURCE, #4	10.	ANODE	9. 10.			
11.	GATE, #3	11.		10.			
12.	SOURCE, #3	12.		12.			
12.	GATE, #2		ANODE	12.			
13.	SOURCE, #2		ANODE	13.			
14.	GATE, #1		ANODE	14.	COMMON DRAIN (OUTPUT)		
15.	SOURCE, #1		ANODE	15.	SOURCE N-CH		
10.	500H0L, #1	10.	ANODE	10.			

DOCUMENT NUMBER:	Belectronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	27P	PAGE 2 OF 2				

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.