MC10EP139DTG Datasheet https://www.DiGi-Electronics.com DiGi Electronics Part Number MC10EP139DTG-DG Manufacturer onsemi Manufacturer Product Number MC10EP139DTG Description IC CLOCK GENERATOR 20TSSOP Detailed Description Clock Generator IC 1GHz 1 20-TSSOP (0.173", 4.40m m Width) Tel: +00 852-30501935 RFQ Email: Info@DiGi-Electronics.com DiGi is a global authorized distributor of electronic components. ## **Purchase and inquiry** | Manufacturer Product Number: | Manufacturer: | |--------------------------------|---------------------------------| | MC10EP139DTG | onsemi | | Series: | Product Status: | | 10EP | Active | | DiGi-Electronics Programmable: | Type: | | Not Verified | Clock Generator | | PLL: | Input: | | No | CML, NECL, PECL | | Output: | Number of Circuits: | | ECL | 1 | | Ratio - Input:Output: | Differential - Input:Output: | | 1:4 | Yes/Yes | | Frequency - Max: | Divider/Multiplier: | | 1GHz | Yes/No | | Voltage - Supply: | Operating Temperature: | | 3V ~ 5.5V | -40°C ~ 85°C | | Mounting Type: | Package / Case: | | Surface Mount | 20-TSSOP (0.173", 4.40mm Width) | | Supplier Device Package: | Base Product Number: | | 20-TSSOP | MC10EP139 | ## **Environmental & Export classification** | RoHS Status: | Moisture Sensitivity Level (MSL): | |------------------|-----------------------------------| | ROHS3 Compliant | 1 (Unlimited) | | REACH Status: | ECCN: | | REACH Unaffected | EAR99 | | HTSUS: | | 8542.39.0001 www.onsemi.com ## 3.3 V/5 V ECL ÷2/4, ÷4/5/6 Clock Generation Chip MC10EP139, MC100EP139 ### Description The MC10/100EP139 is a low skew ÷2/4, ÷4/5/6 clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input. Upon start-up, the internal flip-flops will attain a random state; therefore the master reset (MR) input may require assertion to ensure system synchronization. Internal divider design ensures synchronization between the $\div 2/4$ and the $\div 4/5/6$ outputs within a device. All V_{CC} and V_{EE} pins must be externally connected to power supply to guarantee proper operation. The V_{BB} Pin, an internally generated voltage supply, is available to this device only. For Single-Ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The 100 Series contains temperature compensation. #### **Features** - Maximum Frequency = > 1.0 GHz Typical - 50 ps Output-to-Output Skew - PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$ • NECL Mode Operating Range: $V_{CC} = 0 \text{ V with } V_{EE} = -3.0 \text{ V to } -5.5 \text{ V}$ - Open Input Default State - Safety Clamp on Inputs - Synchronous Enable/Disable - Master Reset for Synchronization of Multiple Chips - V_{BB} Output - These Devices are Pb-Free, Halogen Free and are RoHS Compliant 1 TSSOP-20 WB DT SUFFIX CASE 948E SOIC-20 WB DW SUFFIX CASE 751D #### **MARKING DIAGRAM** TSSOP-20 WB HEP = MC10EP KEP = MC100EP XXX = 10 or 100 A = Assembly Location L,WL = Wafer Lot Y, YY = Year W, WW = Work Week G or = = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note <u>AND8002/D</u>. ### **ORDERING INFORMATION** | Device | e Package | | | | | |-----------------|--------------------------|-----------------------|--|--|--| | MC100EP139DTR2G | TSSOP-20 WB
(Pb-Free) | 2500 /
Tape & Reel | | | | | MC100EP139DWG | TSSOP-20 WB
(Pb-Free) | 38 Units /
Tube | | | | ### **DISCONTINUED** (Note 1) | MC10EP139DTG | TSSOP-20 WB
(Pb-Free) | 75 Units /
Tube | |---------------|--------------------------|--------------------| | MC100EP139DTG | TSSOP-20 WB
(Pb-Free) | 75 Units /
Tube | - †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. - DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com. Warning: All V_{CC} and V_{EE} pins must be externally connected to a Power Supply to guarantee proper operation. Figure 1. 20-Lead Pinout (Top View) **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |---------------------------------------|------------------------------------| | CLK*, CLK* | ECL Differential Clock Inputs | | EN* | ECL Sync Enable | | MR* | ECL Master Reset | | V _{BB} | ECL Reference Output | | Q0, Q1, Q0 , Q1 | ECL Differential ÷ 2/4 Outputs | | Q2, Q3, Q2 , Q3 | ECL Differential ÷ 4/5/6 Outputs | | DIVSELa* | ECL Frequency Select Input ÷ 2/4 | | DIVSELb0* | ECL Frequency Select Input ÷ 4/5/6 | | DIVSELb1* | ECL Frequency Select Input ÷ 4/5/6 | | V _{CC} | ECL Positive Supply | | V _{EE} | ECL Negative Supply | ^{*}Pins will default low when left open. **Table 2. FUNCTION TABLES** | CLK | EN | MR | Function | |-----|----|-----|------------| | Z | L | LLΙ | Divide | | ZZ | H | | Hold Q0:3 | | X | X | | Reset Q0:3 | Z = Low-to-High Transition ZZ = High-to-Low Transition | DIVSELa | Q0:1 Outputs | | | | | | | | |-------------|----------------------------|--|--|--|--|--|--|--| | L
H | Divide by 2
Divide by 4 | | | | | | | | | DIVSELb0 | DIVSELb1 | DIVSELb1 Q2:3 Outputs | | | | | | | | L
H
L | L
L
H | Divide by 4
Divide by 6
Divide by 5
Divide by 5 | | | | | | | Figure 3. CLK and OUTPUT Timing Diagram Figure 4. Timing Diagram ### **Table 3. ATTRIBUTES** | Characteristics | Value | |--|-----------------------------| | Internal Input Pulldown Resistor | 75 kΩ | | Internal Input Pullup Resistor | N/A | | ESD Protection Human Body Model Machine Model Charged Device Model | > 2 kV
> 100 V
> 2 kV | | Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) | Pb-Free Pkg | | SOIC-20 WB
TSSOP-20 W | Level 3
Level 1 | | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | Transistor Count | 758 Devices | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | · | ^{1.} For additional information, see Application Note AND8003/D. ### **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|--|-------------|------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 6 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -6 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $V_{I} \le V_{CC}$
$V_{I} \ge V_{EE}$ | 6
-6 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | I _{BB} | V _{BB} Sink/Source | | | ±0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | −65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-20 WB
TSSOP-20 WB | 140
100 | °C/W | | θЈС | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-20 WB | 23 to 41 | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-20 WB
SOIC-20 WB | 90
60 | °C/W | | θЈС | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-20 WB | 33 to 35 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | < 2 to 3 sec @ 260°C | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 5. 10EP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1)) | | | | −40°C 25°C | | | | | | | | | |--------------------|--|------|------------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 65 | 82 | 105 | 65 | 83 | 105 | 65 | 84 | 105 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2165 | 2290 | 2415 | 2230 | 2355 | 2480 | 2290 | 2415 | 2540 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1365 | 1490 | 1615 | 1430 | 1555 | 1680 | 1490 | 1615 | 1740 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2090 | | 2415 | 2155 | | 2480 | 2215 | | 2540 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1365 | | 1690 | 1460 | | 1755 | 1490 | | 1815 | mV | | V _{BB} | Output Voltage Reference | 1790 | 1890 | 1990 | 1855 | 1955 | 2055 | 1915 | 2015 | 2115 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | 2.0 | | 3.3 | 2.0 | | 3.3 | 2.0 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V. - 2. All loading with 50 Ω to V_{CC} 2.0 V (see Figure 9). - 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 6. 10EP DC CHARACTERISTICS, PECL ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 1)) | | | | -40°C 25°C | | | | | | | | | |--------------------|--|------|------------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 65 | 82 | 105 | 65 | 83 | 105 | 65 | 84 | 105 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3865 | 3990 | 4115 | 3930 | 4055 | 4180 | 3990 | 4115 | 4240 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3065 | 3190 | 3315 | 3130 | 3255 | 3380 | 3190 | 3315 | 3440 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3790 | | 4115 | 3855 | | 4180 | 3915 | | 4240 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3065 | | 3390 | 3130 | | 3455 | 3190 | | 3515 | mV | | V _{BB} | Output Voltage Reference | 3490 | 3590 | 3690 | 3555 | 3655 | 3755 | 3615 | 3715 | 3815 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | 2.0 | | 5.0 | 2.0 | | 5.0 | 2.0 | | 5.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to -0.5 V. - 2. All loading with 50 Ω to V_{CC} 2.0 V (see Figure 9). - 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 7. 10EP DC CHARACTERISTICS, NECL (V_{CC} = 0 V, V_{EE} = -5.5 V to -3.0 V (Note 1)) | | | | −40°C | | | 25°C | | | | | | |--------------------|--|----------------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|----------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 65 | 82 | 105 | 65 | 83 | 105 | 65 | 84 | 105 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1135 | -1010 | -885 | -1070 | -945 | -820 | -1010 | -885 | -760 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1935 | -1810 | -1685 | -1870 | -1745 | -1620 | -1810 | -1685 | -1560 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1210 | | -885 | -1145 | | -820 | -1085 | | -760 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1935 | | -1610 | -1870 | | -1545 | -1810 | | -1485 | mV | | V _{BB} | Output Voltage Reference | -1510 | -1410 | -1310 | -1445 | -1345 | -1245 | -1385 | -1285 | -1185 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | V _{EE} +2.0 | | 0.0 | V _{EE} | +2.0 | 0.0 | V _{EE} | +2.0 | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC}. - 2. All loading with 50 Ω to V_{CC} 2.0 V (see Figure 9). - 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 8. 100EP DC CHARACTERISTICS, PECL ($V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 1)) | | | | -40°C | | 25°C | | 85°C | | | | | |--------------------|--|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 70 | 83 | 100 | 70 | 87 | 105 | 75 | 90 | 110 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1305 | 1480 | 1605 | 1305 | 1480 | 1605 | 1305 | 1480 | 1605 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2075 | | 2420 | 2075 | | 2420 | 2075 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1305 | | 1675 | 1305 | | 1675 | 1305 | | 1675 | mV | | V _{BB} | Output Voltage Reference | 1725 | 1825 | 1925 | 1725 | 1825 | 1925 | 1725 | 1825 | 1925 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | 2.0 | | 3.3 | 2.0 | | 3.3 | 2.0 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V. - 2. All loading with 50 Ω to V_{CC} 2.0 V (see Figure 9). - 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 9. 100EP DC CHARACTERISTICS, PECL (V_{CC} = 5.0 V, V_{EE} = 0 V (Note 1)) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|--|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 70 | 85 | 100 | 70 | 90 | 105 | 75 | 95 | 110 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3005 | 3180 | 3305 | 3005 | 3180 | 3305 | 3005 | 3180 | 3305 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3775 | | 4120 | 3775 | | 4120 | 3775 | | 4120 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3005 | | 3375 | 3005 | | 3375 | 3005 | | 3375 | mV | | V_{BB} | Output Voltage Reference | 3425 | 3525 | 3625 | 3425 | 3525 | 3625 | 3425 | 3525 | 3625 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | 2.0 | | 5.0 | 2.0 | | 5.0 | 2.0 | | 5.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V. - 2. All loading with 50 Ω to V_{CC} 2.0 V (see Figure 9). 3. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 10. 100EP DC CHARACTERISTICS, NECL ($V_{CC} = 0 \text{ V}$, $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 1)) | | | -40°C | | 25°C | | | 85°C | | | | | |--------------------|--|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 70 | 85 | 100 | 70 | 90 | 105 | 75 | 95 | 110 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1995 | -1820 | -1695 | -1995 | -1820 | -1695 | -1995 | -1820 | -1695 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1225 | | -880 | -1225 | | -880 | -1225 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1995 | | -1625 | -1995 | | -1625 | -1995 | | -1625 | mV | | V_{BB} | Output Voltage Reference | -1575 | -1475 | -1375 | -1575 | -1475 | -1375 | -1575 | -1475 | -1375 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3) | V _{EE} | +2.0 | 0.0 | V _{EE} | +2.0 | 0.0 | V _{EE} | +2.0 | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC} . - 2. All loading with 50 Ω to V_{CC} 2.0 V (see Figure 9). 3. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. **Table 11. AC CHARACTERISTICS** ($V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 1)) | | | | -40°C | | | 25°C | | | 85°C | | | |--|--|------------|------------|------------|------------|------------|-------------|------------|------------|-------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency
(See Figures 5, 6, 7 and 8 F _{max}
/JITTER) | | > 1 | | | > 1 | | | > 1 | | GHz | | t _{PLH} ,
t _{PHL} | Propagation Delay
CLK, Q (Diff)
MR, Q | 550
700 | 700
800 | 800
900 | 600
700 | 750
850 | 900
1000 | 675
800 | 825
950 | 975
1100 | ps | | t _{RR} | Reset Recovery | 200 | 100 | | 200 | 100 | | 200 | 100 | | ps | | t _s | Setup Time EN, CLK DIVSEL, CLK | 200
400 | 120
180 | | 200
400 | 120
180 | | 200
400 | 120
180 | | ps | | t _h | Hold Time
CLK, EN
CLK, DIVSEL | 100
200 | 50
140 | | 100
200 | 50
140 | | 100
200 | 50
140 | | ps | | t _{PW} | Minimum Pulse Width MR | 550 | 450 | | 550 | 450 | | 550 | 450 | | ps | | t _{SKEW} | Within Device Skew Q, $\overline{\mathbb{Q}}$ Device-to-Device Skew (Note 2) | | 50
200 | 100
300 | | 50
200 | 100
300 | | 50
200 | 100
300 | ps | | t _{JITTER} | Random Clock Jitter (RMS)
(See Figures 5, 6, 7 and 8
F _{max} /JITTER) | | 0.2 | < 1.0 | | 0.2 | < 1.0 | | 0.2 | < 1.5 | ps | | V _{PP} | Input Voltage Swing (Differential Configuration) | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | t _r
t _f | Output Rise/Fall Times
Q, Q (20%-80%) | 110 | 180 | 250 | 125 | 190 | 275 | 150 | 215 | 300 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V (see Figure 9). Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. Figure 5. \div 2, F_{max} /Jitter Figure 6. \div 5, F_{max} /Jitter Figure 7. \div 4, F_{max} /Jitter Figure 8. \div 6, F_{max} /Jitter Figure 9. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices) ### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices ECLinPS is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. ### **MECHANICAL CASE OUTLINE** PACKAGE DIMENSIONS **DATE 22 APR 2015** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | | | | | |-----|-------------|-------|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | Α | 2.35 | 2.65 | | | | | | | A1 | 0.10 | 0.25 | | | | | | | b | 0.35 | 0.49 | | | | | | | C | 0.23 | 0.32 | | | | | | | D | 12.65 | 12.95 | | | | | | | E | 7.40 | 7.60 | | | | | | | е | 1.27 | BSC | | | | | | | Н | 10.05 | 10.55 | | | | | | | h | 0.25 | 0.75 | | | | | | | L | 0.50 | 0.90 | | | | | | | θ | 0° | 7 ° | | | | | | ### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Documen
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | | |------------------|-------------|--|-------------|--|--|--|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | | | | onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **MECHANICAL CASE OUTLINE** PACKAGE DIMENSIONS ### **DATE 17 FEB 2016** #### NOTES: - NOTES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT - EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE - DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W-. | | MILLIN | IETERS | INCHES | | | | |-----|--------|--------|-----------|-------|--|--| | DIM | MIN | MAX | MIN | MAX | | | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | | С | | 1.20 | | 0.047 | | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | | G | 0.65 | BSC | 0.026 BSC | | | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | | L | 6.40 | | 0.252 | BSC | | | | M | 0° | 8° | 0° | 8° | | | ### **RECOMMENDED SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Re
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | | |------------------|-------------|--|-------------|--|--|--|--| | DESCRIPTION: | TSSOP-20 WB | | PAGE 1 OF 1 | | | | | onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales ### **OUR CERTIFICATE** DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com Tel: +00 852-30501935 RFQ Email: Info@DiGi-Electronics.com