

MC10H645FN Datasheet

www.digi-electronics.com

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MC10H645FN-DG

Manufacturer onsemi

Manufacturer Product Number MC10H645FN

Description IC CLK BUFFER 2:9 28PLCC

Detailed Description Clock Fanout Buffer (Distribution), Multiplexer IC 2:

9 28-LCC (J-Lead)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MC10H645FN	onsemi
Series:	Product Status:
	Obsolete
Type:	Number of Circuits:
Fanout Buffer (Distribution), Multiplexer	1
Ratio - Input:Output:	Differential - Input:Output:
2:9	Yes/Yes
Input:	Output:
Input: TTL	Output: TTL
TTL	πL
TTL Voltage - Supply:	TTL Operating Temperature:
TTL Voltage - Supply: 4.75V ~ 5.25V	TTL Operating Temperature: 0°C ~ 85°C
TTL Voltage - Supply: 4.75V ~ 5.25V Mounting Type:	Operating Temperature: 0°C ~ 85°C Package / Case:

Environmental & Export classification

8542.39.0001

RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

2:1:9 TTL Clock Driver

Description

The MC10H645 is a single supply, low skew, TTL I/O 2:1:9 Clock Driver. Devices in the H600 clock driver family utilizes the PLCC–28 for optimal power and signal pin placement.

The device features a 24 mA TTL output stage with AC performance specified into a 50 pF load capacitance. A 2:1 input Mux is provided on chip to allow for distributing both system and diagnostic clock signals or designing clock redundancy into a system. With the SEL input held LOW the DO input will be selected, while the D1 input is selected when the SEL input is forced HIGH.

Features

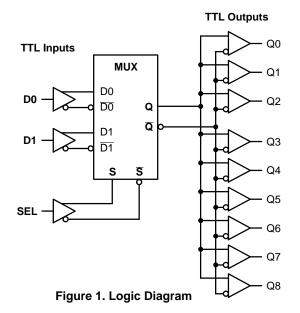
- Low Skew Typically 0.65 ns Within Device
- Guaranteed Skew Spec 1.25 ns Part-to-Part
- Input Clock Muxing
- Differential ECL Internal Design
- Single Supply
- Extra TTL and ECL Power/Ground Pins
- These Devices are Pb-Free and are RoHS Compliant*

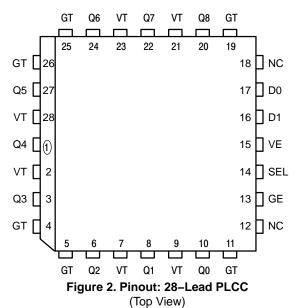
ON Semiconductor®

www.onsemi.com

PLCC FN SUFFIX CASE 776

MARKING DIAGRAM


A = Assembly Location


WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Table 1. PIN NAMES

PIN	FUNCTION
GT VT VE GE Dn Q0 – Q8 SEL	TTL Ground (0 V) TTL V _{CC} (+5.0 V) ECL V _{CC} (+5.0 V) ECL Ground (0 V) TTL Signal Input TTL Signal Outputs TTL Mux Select

Table 2. PIN DESCRIPTIONS

Pin	Symbol	Description	Pin	Symbol	Description
1	Q4	Signal Output (TTL)	15	VE	ECL V _{CC} (+5.0 V)
2	VT	TTL V _{CC} (+5.0 V)	16	D1	Signal Input (TTL)
3	Q3	Signal Output (TTL)	17	D0	Signal Input (TTL)
4	GT	TTL Ground (0 V)	18	NC	No Connection
5	GT	TTL Ground (0 V)	19	GT	TTL Ground (0 V)
6	Q2	Signal Output (TTL)	20	Q8	Signal Output (TTL)
7	VT	TTL V _{CC} (+5.0 V)	21	VT	TTL V _{CC} (+5.0 V)
8	Q1	Signal Output (TTL)	22	Q7	Signal Output (TTL)
9	VT	TTL V _{CC} (+5.0 V)	23	VT	TTL V _{CC} (+5.0 V)
10	Q0	Signal Output (TTL)	24	Q6	Signal Output (TTL)
11	GT	TTL Ground (0 V)	25	GT	TTL Ground (0 V)
12	NC	No Connection ´	26	GT	TTL Ground (0 V)
13	GE	ECL Ground	27	Q5	Signal Output (TTL)
14	SEL	Select Input (TTL)	28	VT	TTL V _{CC} (+5.0 V)

Table 3. TRUTH TABLE

D0	D1	SEL	Q
L H X X	X X L H	III	н н

Table 4. ABSOLUTE RATINGS (Do not exceed)

Symbol	Characteristic	Value	Unit
VE (ECL)	Power Supply Voltage	-0.5 to +7.0	V
VT (TTL)	Power Supply Voltage	-0.5 to +7.0	V
VI (TTL)	Input Voltage	-0.5 to +7.0	V
V _{out}	Disabled 3-State Output	0.0 to V _T	V
T _{stg}	Storage Temperature	-65 to 150	°C
T _{amb}	Operating Temperature	0.0 to +85	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

			0 °	C.	25	°C	85	°C		
Symbol	Characterist	ic	Min	Max	Min	Max	Min	Max	Unit	Condition
I _{EE}	Power Supply Current	ECL		30		30		30	mA	VE Pin
I _{CCH}		TTL		30		30		30	mA	Total all VT pins
I _{CCL}				35		35		35	mA	
V _{OH}	Output HIGH Voltage		2.5 2.0		2.5 2.0		2.5 2.0		V	$I_{OH} = -3.0 \text{ mA}$ $I_{OH} = -15 \text{ mA}$
V _{OL}	Output LOW Voltage			0.5		0.5		0.5	V	I _{OL} = 24 mA
I _{OS}	Output Short Circuit Cu	rrent	-100	-225	-100	-225	-100	-225	mA	V _{OUT} = 0 V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Table 6. TTL DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

		0 °	C	25	°C	85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	2.0	0.8	2.0	0.8	2.0	0.8	V	
I _{IH}	Input HIGH Current		20 100		20 100		20 100	μΑ	V _{IN} = 2.7 V V _{IN} = 7.0 V
I _{IL}	Input LOW Current		-0.6		-0.6		-0.6	mA	V _{IN} = 0.5 V
V _{OH}	Output HIGH Voltage	2.5 2.0		2.5 2.0		2.5 2.0		V	$I_{OH} = -3.0 \text{ mA}$ $I_{OH} = -24 \text{ mA}$
V _{OL}	Output LOW Voltage		0.5		0.5		0.5	V	I _{OL} = 24 mA
V _{IK}	Input Clamp Voltage		-1.2		-1.2		-1.2	V	$I_{IN} = -18 \text{ mA}$
Ios	Output Short Circuit Current	-100	-225	-100	-225	-100	-225	mA	V _{OUT} = 0 V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Table 7. AC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

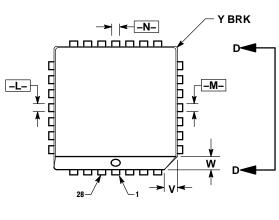
			0	°C	25	°C	85°C			
Symbol	Characteristic		Min	Max	Min	Max	Min	Max	Unit	Condition
t _{PLH}	Propagation Delay D ₀ to Output Only	Q0-Q8	4.8	5.8	4.8	5.8	5.2	6.2	ns	CL = 50 pF
t _{PLH}	Propagation Delay D ₁ to Output		4.8	5.8	4.8	5.8	5.2	6.2	ns	
t _{PHL}	Propagation Delay D ₀ to Output D ₁ to Output		4.8 4.8	5.8 5.8	4.8 4.8	5.8 5.8	5.2 5.2	6.2 6.2	ns	
t _{skpp}	Part-to-Part Skew D ₀ to Output Only			1.0		1.0		1.0	ns	
t _{skwd} *	Within-Device Skew D ₀ to Output Only			0.65		0.65		0.65	ns	
t _{PLH}	Propagation Delay SEL to Q	Q0-Q8	4.5	6.5	5.0	7.0	5.2	7.2	ns	CL = 50 pF
t _r t _f	Output Rise/Fall Time 0.8V to 2.0V	Q0-Q8	0.5 0.5	2.5 2.5	0.5 0.5	2.5 2.5	0.5 0.5	2.5 2.5	ns	CL = 50 pF
t _S	Setup Time SEL to D		1.0		1.0		1.0		ns	

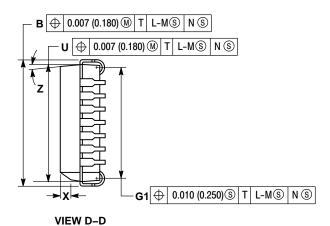
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Table 8. DUTY CYCLE SPECIFICATIONS ($0^{\circ}C \le T_A \le 85^{\circ}C$; Duty Cycle Measured Relative to 1.5 V)

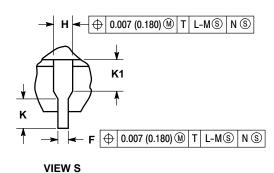
Symbol	Characteristic		Min	Nom	Max	Unit	Condition
PW	Range of V _{CC} and CL to Meet Min Pulse Width (HIGH or LOW) at f _{out} ≤50MHz	V _{CC} CL PW	4.875 10.0 9.0	5.0	5.125 50.0 11.0	V pF ns	All Outputs

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10H645FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10H645FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}Within-Device Skew defined as identical transitions on similar paths through a device.


PACKAGE DIMENSIONS

PLCC-28 **FN SUFFIX** CASE 776-02 ISSUE E

⊕ 0.007 (0.180) M T L-MS N S \oplus 0.007 (0.180) M T L-MS N S C Ε ☐ 0.004 (0.100) -T- SEATING VIEW S G1 ⊕ 0.010 (0.250)⑤ T L-M⑥ N ⑥

NOTES:

- IOTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 THE PACKAGE TOP MAY BE SMALLER THAN
 THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. PLASTIC BODY
- 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
С	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.021	0.33	0.53
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Υ		0.020	-	0.50
Z	2 °	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical expents. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com