

MC10LVEP11DR2G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number

MC10LVEP11DR2G-DG

Manufacturer

onsemi

Manufacturer Product Number

MC10LVEP11DR2G

Description

IC CLK BUFFER 1:2 3GHZ 8SOIC

Detailed Description

Clock Fanout Buffer (Distribution) IC 1:2 3 GHz 8-SO

IC (0.154", 3.90mm Width)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MC10LVEP11DR2G	onsemi
Series:	Product Status:
	Active
Type:	Number of Circuits:
Fanout Buffer (Distribution)	1
Ratio - Input:Output:	Differential - Input:Output:
1:2	Yes/Yes
Input:	Output:
CML, LVDS, PECL	ECL, PECL
Frequency - Max:	Voltage - Supply:
3 GHz	2.375V ~ 3.8V
Operating Temperature:	Mounting Type:
-40°C ~ 85°C	Surface Mount
Package / Case:	Supplier Device Package:
8-SOIC (0.154", 3.90mm Width)	8-SOIC
Base Product Number:	
MC10LVEP11	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

2.5 V/3.3 V ECL 1:2 Differential Fanout Buffer MC10LVEP11, MC100LVEP11

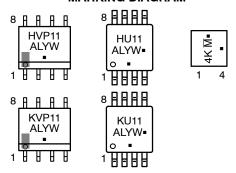
Description

The MC10/100LVEP11 is a differential 1:2 fanout buffer. The device is pin and functionally equivalent to the EP11 device. With AC performance the same as the EP11 device, the LVEP11 is ideal for applications requiring lower voltage. Single-ended CLK input operation is limited to a $V_{CC} \geq 3.0~V$ in PECL mode, or $V_{EE} \leq -3.0~V$ in NECL mode.

The 100 Series contains temperature compensation.

Features

- 240 ps Typical Propagation Delay
- Maximum Frequency > 3.0 GHz Typical
- PECL Mode Operating Range:
 - $V_{CC} = 2.375 \text{ V to } 3.8 \text{ V with } V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
 - $V_{CC} = 0 \text{ V with } V_{EE} = -2.375 \text{ V to } -3.8 \text{ V}$
- Open Input Default State
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- LVDS Input Compatible
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant



SOIC-8 NB D SUFFIX CASE 751-07 TSSOP-8 DT SUFFIX CASE 948R-02

DFN-8 MN SUFFIX CASE 506AA

MARKING DIAGRAM

A = Assembly Location

(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10LVEP11DR2G	SOIC-8 NB (Pb-Free)	2500 / Tape & Reel
MC10LVEP11DTG	TSSOP-8 (Pb-Free)	100 Units / Tube
MC100LVEP11DG	SOIC-8 NB (Pb-Free)	98 Units / Tube
MC100LVEP11DR2G	SOIC-8 NB (Pb-Free)	2500 / Tape & Reel
MC100LVEP11DTG	TSSOP-8 (Pb-Free)	100 Units / Tube
MC100LVEP11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100LVEP11MNR4G	DFN-8 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

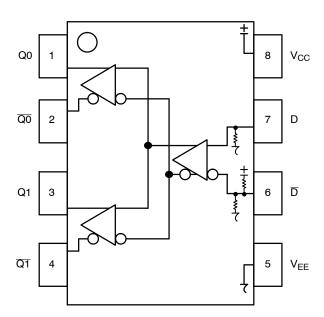


Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D*, D **	ECL Data Inputs
Q0, Q0 , Q1, Q1	ECL Data Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply
EP	(DFN-8 only) Thermal exposed pad must be connected to a sufficient ther- mal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

^{*}Pins will default to 2/3 $\rm V_{CC}$ when left open. **Pins will default LOW when left open.

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	37.5 kΩ
ESD Protection Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
SOIC-8 NB TSSOP-8 DFN-8	Level 1 Level 3 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	110 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	V _I ≤[V _{CC} V _I ≥[V _{EE}	6 -6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8	185 140	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN-8	129 84	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN-8	35 to 40	°C/W
T _{sol}	Wave Solder (Pb-Free)	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Table 4. 10LVEP DC CHARACTERISTICS, PECL (V_{CC} = 2.5 V, V_{EE} = 0 V (Note 1))

		-40°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	33	40	29	33	40	32	34	42	mA
V _{OH}	Output HIGH Voltage (Note 2)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{OL}	Output LOW Voltage (Note 2)	565	740	865	630	805	930	690	865	990	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.125 V to -1.3 V.
- 2. All loading with 50 Ω to V_{CC} 2.0 V.
- 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Single-Ended input CLK pin operation is limited to V_{CC} ≥[3.0 V in PECL mode.

Table 5. 10LVEP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1))

			-40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	33	40	29	33	40	32	34	42	mA
V _{OH}	Output HIGH Voltage (Note 2)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 2)	1365	1540	1665	1430	1605	1730	1490	1665	1790	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 3)	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 3)	1365		1690	1430		1755	1490		1815	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 –150			0.5 –150			0.5 -150			μΑ

- 1. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary +0.925 V to -0.5 V.
- 2. All loading with 50 Ω to V_{CC} 2.0 V.
- 3. Single-Ended input CLK pin operation is limited to V_{CC} ≥3.0 V in PECL mode.
- V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 6. 10LVEP DC CHARACTERISTICS, NECL (V_{CC} = 0 V, V_{EE} = -3.8 V to -2.375 V (Note 1))

			-40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	33	40	29	33	40	32	34	42	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V _{OL}	Output LOW Voltage (Note 2)	-1935	-1760	-1635	-1870	-1695	-1570	-1810	-1635	-1510	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 3)	-1210		-885	-1145		-820	-1085		-760	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 3)	-1935		-1610	-1870		-1545	-1810		-1485	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	V _{EE} +1.2		0.0	V _{EE}	V _{EE} +1.2		0.0 V _{EE} -		0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 1. Input and output parameters vary 1:1 with V_{CC}.
- 2. All loading with 50 Ω to V_{CC} 2.0 V.
- 3. Single-Ended input CLK pin operation is limited to $V_{EE} \leq 3.0 \text{ V}$ in NECL mode.
- 4. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 7. 100LVEP DC CHARACTERISTICS, PECL (V_{CC} = 2.5 V, V_{EE} = 0 V (Note 1))

		−40°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	35	42	29	38	46	32	41	50	mA
V _{OH}	Output HIGH Voltage (Note 2)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 2)	555	730	900	555	730	900	555	730	900	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	1335		1620	1335		1620	1335		1620	mV
V _{IL}	Input LOW Voltage (Single-Ended)	555		900	555		900	555		900	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.125 V to -1.3 V.
- 2. All loading with 50 Ω to V_{CC} 2.0 V.
- 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Single-Ended input CLK pin operation is limited to V_{CC} ≥[3.0 V in PECL mode.

Table 8. 100LVEP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1))

			-40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Power Supply Current	25	35	42	29	38	46	32	41	50	mA	
V _{OH}	Output HIGH Voltage (Note 2)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV	
V _{OL}	Output LOW Voltage (Note 2)	1355	1530	1700	1355	1530	1700	1355	1530	1700	mV	
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 3)	2135		2420	2135		2420	2135		2420	mV	
V _{IL}	Input LOW Voltage (Single-Ended) (Note 3)	1355		1700	1355		1700	1355		1700	mV	
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	1.2		3.3	1.2		3.3	1.2		3.3	V	
I _{IH}	Input HIGH Current			150			150			150	μΑ	
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.5 V.
- 2. All loading with 50 Ω to V_{CC} 2.0 V_{CC}
- 3. Single-Ended input CLK pin operation is limited to $V_{CC} \ge 3.0 \text{ V}$ in PECL mode.
- 4. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 9. 100LVEP DC CHARACTERISTICS, NECL (V_{CC} = 0 V; V_{EE} = -3.8 V to -2.375 V (Note 1))

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	35	42	29	38	46	32	41	50	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 2)	-1945	-1770	-1600	-1945	-1770	-1600	-1945	-1770	-1600	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 3)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 3)	-1945	-1425	-1600	-1945	-1425	-1600	-1945	-1425	-1600	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	V _{EE}	V _{EE} +1.2		V _{EE}	V _{EE} +1.2		V _{EE}	<u>=</u> +1.2 0.0		V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

- 1. Input and output parameters vary 1:1 with V_{CC} .
- 2. All loading with 50 Ω to V $_{CC}$ 2.0 V.
- 3. Single-Ended input CLK pin operation is limited to $V_{EE} \le -3.0 \text{ V}$ in NECL mode.
- 4. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 10. AC CHARACTERISTICS ($V_{CC} = 0 \text{ V}; V_{EE} = -3.8 \text{ V} \text{ to } -2.375 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.8 \text{ V}; V_{EE} = 0 \text{ V} \text{ (Note 1))}$

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)			3			3			3		GHz
t _{PLH} , t _{PHL}	Propagation Delay (Differential Configuration) CLK to Q, Q		170	230	300	180	240	310	210	270	360	ps
t _{SKEW}	Within Device Skew Device to Device Skew (Note 2)	Q, Q		5.0	20 130		5.0	20 130		5.0	20 150	ps
t _{JITTER}	CLOCK Random Jitter (RMS) @ ≤1.0 GHz @ ≤1.5 GHz @ ≤2.0 GHz @ ≤2.5 GHz @ ≤3.0 GHz			0.126 0.112 0.111 0.112 0.155	0.3 0.2 0.3 0.2 0.2		0.142 0.162 0.122 0.172 0.217	0.4 0.3 0.2 0.3 0.3		0.209 0.162 0.170 0.235 0.368	0.3 0.2 0.3 0.3 0.6	ps
V _{PP}	Input Voltage Swing (Differential Configuration)		150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times (20% – 80%)	Q, Q	70	110	170	80	120	180	100	140	200	ps

- 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} 2.0 V.
- 2. Skew is measured between outputs under identical transitions.

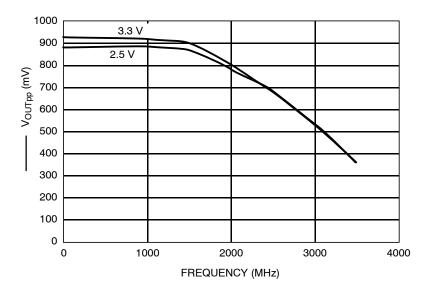


Figure 2. F_{max} Typical

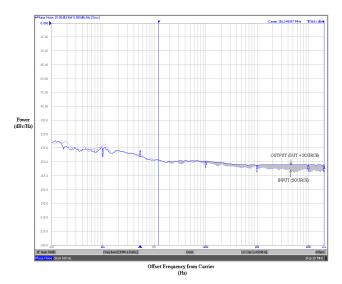


Figure 3. Typical Phase Noise Plot at f_{carrier} = 156.25 MHz

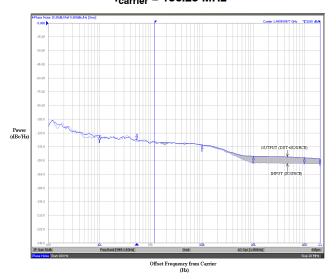


Figure 5. Typical Phase Noise Plot at $f_{carrier} = 1.5 \text{ GHz}$

The above phase noise plots captured using Agilent E5052A show additive phase noise of the MC100LVEP11 device at frequencies 156.25 MHz, 311.04 MHz, 1.5 GHz and 2 GHz respectively at an operating voltage of 3.3 V in room temperature. The RMS Phase Jitter contributed by the

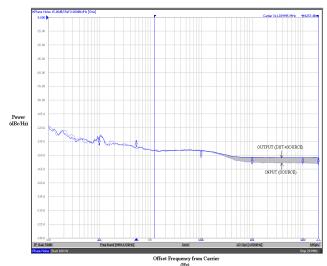


Figure 4. Typical Phase Noise Plot at f_{carrier} = 311.04 MHz

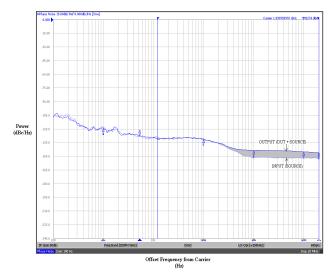


Figure 6. Typical Phase Noise Plot at f_{carrier} = 2 GHz

device (integrated between 12 kHz and 20 MHz; as shown in the shaded region of the plot) at each of the frequencies is 66 fs, 37 fs, 14 fs and 13 fs respectively. The input source used for the phase noise measurements is Agilent E8663B.

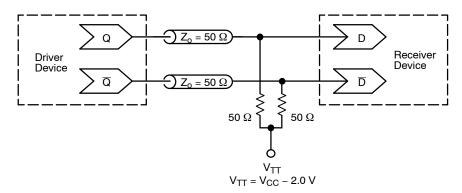


Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

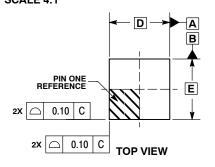
AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices


MECHANICAL CASE OUTLINE

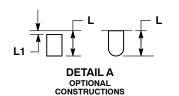
PACKAGE DIMENSIONS

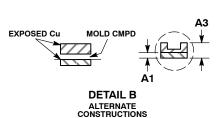
DFN8 2x2, 0.5P CASE 506AA **ISSUE F**

DATE 04 MAY 2016

DETAIL B

SIDE VIEW


(A3)


0.10 С

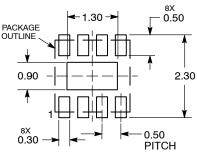
0.08 С

DETAIL A

NOTE 4

ASME Y14.5M, 1994 . CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN

NOTES


0.15 AND 0.20 MM FROM TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED

DIMENSIONING AND TOLERANCING PER

PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	MIN MAX			
Α	0.80	1.00			
A 1	0.00	0.05			
А3	0.20	REF			
b	0.20 0.30				
D	2.00	2.00 BSC			
D2	1.10	1.30			
Е	2.00	BSC			
E2	0.70	0.90			
е	0.50 BSC				
K	0.30 REF				
L	0.25 0.35				
11	0.10				

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

+D2 →

SEATING PLANE

C

0.10 CAB е С 0.05 NOTE 3 **BOTTOM VIEW**

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

= Date Code

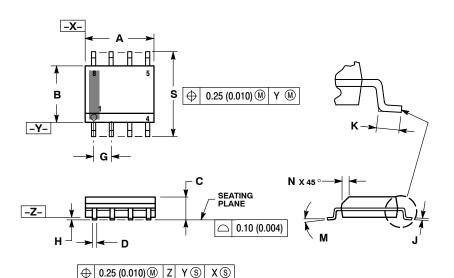
= Pb-Free Device

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

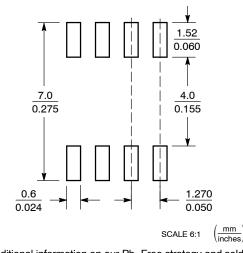
DOCUMENT NUMBER:	98AON18658D	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DFN8, 2.0X2.0, 0.5MM PITCH		PAGE 1 OF 1

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

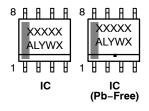

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK**

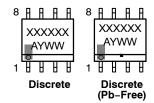

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Wafer Lot = Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location

Α

ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

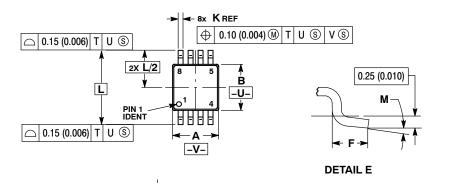
SOIC-8 NB CASE 751-07 ISSUE AK

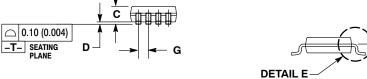
DATE 16 FEB 2011

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON STYLE 19:	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN 8. DRAIN
3. V10UT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	7. DHAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

TSSOP-8 3.00x3.00x0.95 CASE 948R-02 **ISSUE A**

DATE 07 APR 2000

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 DIMENSION OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026 BSC		
K	0.25	0.40	0.010	0.016	
L	4.90 BSC		0.193	BSC	
M	0°	6 °	0°	6°	

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-8 3.00x3.00x0.95		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.org/www.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com