

MC14044BDR2G Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	MC14044BDR2G-DG
Manufacturer	onsemi
Manufacturer Product Number	MC14044BDR2G
Description	IC LATCH R-S QUAD P/N 16-SOIC
Detailed Description	S-R Latch 4 Channel 1:1 IC Tri-State 16-SOIC

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MC14044BDR2G	onsemi
Series:	Product Status:
4000B	Active
Logic Type:	Circuit:
S-R Latch	1:1
Output Type:	Voltage - Supply:
Tri-State	3V ~ 18V
Independent Circuits:	Delay Time - Propagation:
4	60ns
Current - Output High, Low:	Operating Temperature:
8.8mA, 8.8mA	-55°C ~ 125°C
Mounting Type:	Package / Case:
Surface Mount	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package:	Base Product Number:
16-SOIC	MC14044

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

onsemi

CMOS MSI

Quad R-S Latches

MC14043B, MC14044B

The MC14043B and MC14044B quad R–S latches are constructed with MOS P–Channel and N–Channel enhancement mode devices in a single monolithic structure. Each latch has an independent Q output and set and reset inputs. The Q outputs are gated through three–state buffers having a common enable input. The outputs are enabled with a logical "1" or high on the enable input; a logical "0" or low disconnects the latch from the Q outputs, resulting in an open circuit at the Q outputs.

Features

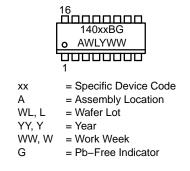
- Double Diode Input Protection
- Three-State Outputs with Common Enable
- Outputs Capable of Driving Two Low–power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature (8–Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C


This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

D SUFFIX CASE 751B

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

PIN ASSIGNMENT

MC14043B

Q3 [1●	16] V _{DD}
Q0 [2	15] R3
R0 [3	14] S3
S0 [4	13] NC
E	5	12] S2
S1 [6	11] R2
R1 [7	10] Q2
V _{SS} [8	9] Q1

MC14044B						
Q3 [1•	16				
NC [2	15] <u>53</u>			
<u>50</u> [3	14] R3			
R0 [4	13] Q0			
E	5	12] <u>R2</u>			
R1 [6	11] <u>52</u>			
<u>S1</u> [7	10] Q2			
v _{ss} [8	9] Q1			

NC = NO CONNECTION

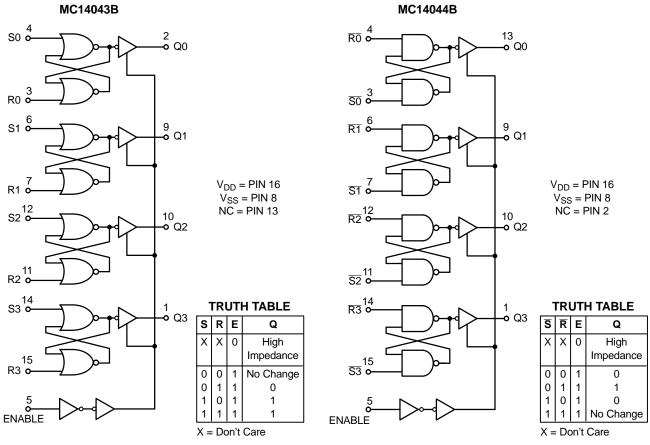


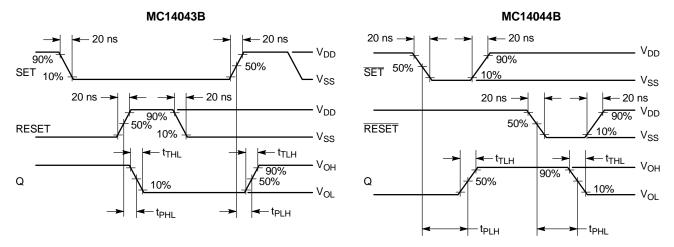
Figure 2.

ELECTRICAL CHARACTERISTICS	(Voltages Referenced to V _{SS})
----------------------------	---

				- 5	5°C		25°C		125	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_{O} = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_{O} = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_{O} = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11		Vdc
$\begin{array}{l} \text{Output Drive Current} \\ (\text{V}_{\text{OH}} = 2.5 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 4.6 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 9.5 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 13.5 \ \text{Vdc}) \end{array}$	Source	I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		l _{in}	15	_	±0.1	-	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	I	-	I	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	_ _ _	1.0 2.0 4.0		0.002 0.004 0.006	1.0 2.0 4.0	- - -	30 60 120	μAdc
Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outpu buffers switching)	nt,	ŀŢ	5.0 10 15			I _T = (1	.58 μΑ/kHz) .15 μΑ/kHz) .73 μΑ/kHz)	f + I _{DD}			μAdc
Three-State Output Leaka Current	ge	I _{TL}	15	-	±0.1	-	±0.0001	±0.1	-	±3.0	μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
The formulas given are for the typical characteristics only at 25°C.
To calculate total supply current at loads other than 50 pF:

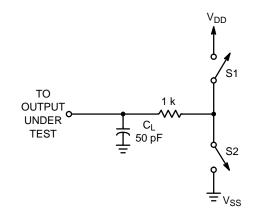
 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$


where: I_T is in μA (per package), C_L in pF, V = ($V_{DD} - V_{SS}$) in volts, f in kHz is input frequency, and k = 0.004.

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise Time $t_{TLH} = (1.35 \text{ ns/pF}) \text{ C}_L + 32.5 \text{ ns}$ $t_{TLH} = (0.60 \text{ ns/pF}) \text{ C}_L + 20 \text{ ns}$ $t_{TLH} = (0.40 \text{ ns/pF}) \text{ C}_L + 20 \text{ ns}$	t _{TLH}	5.0 10 15		100 50 40	200 100 80	ns
Output Fall Time $t_{THL} = (1.35 \text{ ns/pF}) \text{ C}_{L} + 32.5 \text{ ns}$ $t_{THL} = (0.60 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns}$ $t_{THL} = (0.40 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns}$	t _{THL}	5.0 10 15		100 50 40	200 100 80	ns
Propagation Delay Time $t_{PLH} = (0.90 \text{ ns/pF}) \text{ C}_{L} + 130 \text{ ns}$ $t_{PLH} = (0.36 \text{ ns/pF}) \text{ C}_{L} + 57 \text{ ns}$ $t_{PLH} = (0.26 \text{ ns/pF}) \text{ C}_{L} + 47 \text{ ns}$	t _{PLH}	5.0 10 15		175 75 60	350 175 120	ns
t _{PHL} = (0.90 ns/pF) C _L + 130 ns t _{PHL} = (0.90 ns/pF) C _L + 57 ns t _{PHL} = (0.26 ns/pF) C _L + 47 ns	t _{PHL}	5.0 10 15	_ _ _	175 75 60	350 175 120	ns
Set, Set Pulse Width	t _W	5.0 10 15	200 100 70	80 40 30	- -	ns
Reset, Reset Pulse Width	tw	5.0 10 15	200 100 70	80 40 30	- - -	ns
Three-State Enable/Disable Delay	t _{PLZ} , t _{PHZ} , t _{PZL} , t _{PZH}	5.0 10 15		150 80 55	300 160 110	ns

The formulas given are for the typical characteristics only at 25°C.
Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.



THREE-STATE ENABLE/DISABLE DELAYS

Set, Reset, Enable, and Switch Conditions for 3-State Tests

					MC14043B		MC14044B	
Test	Enable	S1	S2	Q	S	R	S	R
t _{PZH}	<i>_</i>	Open	Closed	А	V_{DD}	V_{SS}	V_{SS}	V_{DD}
t _{PZL}	7	Closed	Open	В	V_{SS}	V_{DD}	V_{DD}	V_{SS}
t _{PHZ}	~	Open	Closed	А	V_{DD}	V_{SS}	V_{SS}	V_{DD}
t _{PLZ}	~	Closed	Open	В	V_{SS}	V _{DD}	V _{DD}	V _{SS}

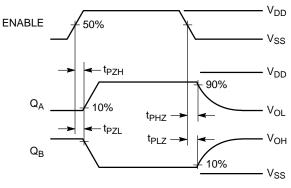


Figure 5.

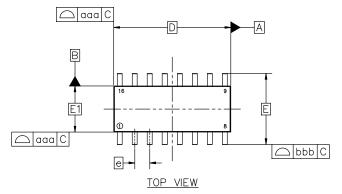
ORDERING INFORMATION

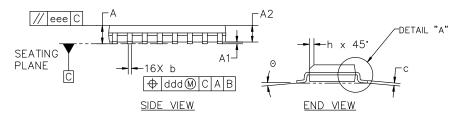
Device	Package	Shipping [†]
MC14043BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14043BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14043BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14043BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

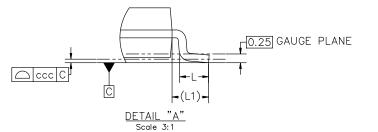
MC14044BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14044BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14044BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

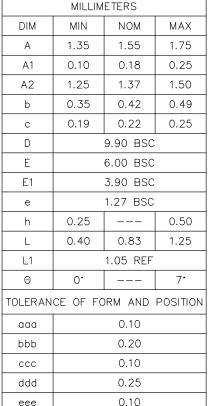
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

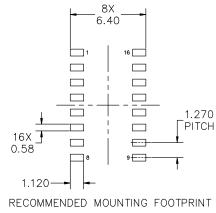
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.


PACKAGE DIMENSIONS


SOIC-16 9.90x3.90x1.37 1.27P CASE 751B **ISSUE M**


DATE 18 OCT 2024


NOTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. 1.
- DIMENSION IN MILLIMETERS. ANGLE IN DEGREES. 2.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE. 4.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE 5 DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE **b** DIMENSION AT MAXIMUM MATERIAL CONDITION.

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 1 OF 2

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

16	A	_ A	A.	- A	R	A	A	Æ
XXXXXXXXXXXXX								
		XX	XX)	XX	XX	XX)	XX	x
	0		A١	NĽ	YW	/W		
1	H	Н	H	H	Н	Н	Н	Ъ

XXXXX = Specific Device Code

= Assembly Location

- WL = Wafer Lot
- Y = Year

Α

- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:		TYLE 4:	
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
2.	BASE	2.		2.	BASE. #1	2.	
2.	EMITTER	2.	NO CONNECTION	2.	EMITTER, #1	2.	
3. 4.	NO CONNECTION	3. 4.	CATHODE	3. 4.	COLLECTOR, #1	3. 4.	,
4. 5.	EMITTER	4. 5.	CATHODE	4. 5.	COLLECTOR, #1	4. 5.	
5. 6.	BASE	J. 6.	NO CONNECTION	5. 6.	BASE, #2	5. 6.	
0. 7.	COLLECTOR	•••	ANODE	0. 7.	EMITTER, #2	0. 7.	
7. 8.	COLLECTOR		CATHODE	7. 8.	COLLECTOR. #2	7. 8.	
o. 9.	BASE	o. 9.		o. 9.	,		BASE. #4
•••	EMITTER		ANODE		BASE, #3		EMITTER, #4
10.	NO CONNECTION		NO CONNECTION	10.			BASE. #3
	EMITTER		CATHODE		COLLECTOR, #3		EMITTER, #3
	BASE		CATHODE		COLLECTOR, #3		BASE, #2
	COLLECTOR		NO CONNECTION		BASE, #4		EMITTER, #2
	EMITTER		ANODE	14.			BASE, #1
	COLLECTOR		CATHODE		COLLECTOR, #4	16.	
10.	COLLECTOR	10.	CATHODE	10.	COLLECTOR, #4	10.	EWITTER, #1
STYLE 5: PIN 1.	DRAIN. DYE #1	STYLE 6: PIN 1.	CATHODE	STYLE 7: PIN 1.	SOURCE N-CH		
2.	DRAIN, DTE #1 DRAIN, #1	FIN 1. 2.	CATHODE	2.			
2.	DRAIN, #1 DRAIN, #2	2.	CATHODE	2. 3.			
3. 4.	DRAIN, #2 DRAIN, #2		CATHODE		GATE P-CH		
4. 5.	DRAIN, #2 DRAIN, #3		CATHODE	4. 5.	COMMON DRAIN (OUTPUT)		
5. 6.	DRAIN, #3		CATHODE	5. 6.	COMMON DRAIN (OUTPUT)		
0. 7.	DRAIN, #3		CATHODE	0. 7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4	8.		7. 8.			
0. 9.	GATE. #4	0. 9.		9.	SOURCE P-CH		
9. 10.	SOURCE, #4	5. 10.		9. 10.	COMMON DRAIN (OUTPUT)		
11.	GATE. #3	11.		10.	COMMON DRAIN (OUTPUT)		
12.	SOURCE, #3		ANODE	12.	COMMON DRAIN (OUTPUT)		
12.	GATE. #2		ANODE	12.			
13.	SOURCE, #2		ANODE	13.	•••••		
14.	GATE, #1		ANODE	14.	COMMON DRAIN (OUTPUT)		
15.	SOURCE, #1	15.		15.	SOURCE N-CH		
10.	300NUE, #1	10.	ANODE	10.			

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others. MC14044BDR2G onsemi IC LATCH R-S QUAD P/N 16-SOIC

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.