MC33164D-3G Datasheet https://www.DiGi-Electronics.com DiGi Electronics Part Number MC33164D-3G-DG Manufacturer onsemi Manufacturer Product Number MC33164D-3G Description IC SUPERVISOR 1 CHANNEL 8SOIC Detailed Description Supervisor Open Drain or Open Collector 1 Channe 8-5010 Tel: +00 852-30501935 RFQ Email: Info@DiGi-Electronics.com DiGi is a global authorized distributor of electronic components. ## **Purchase and inquiry** | Manufacturer Product Number: | Manufacturer: | |--------------------------------|-------------------------------| | MC33164D-3G | onsemi | | Series: | Product Status: | | | Active | | DiGi-Electronics Programmable: | Type: | | Not Verified | Simple Reset/Power-On Reset | | Number of Voltages Monitored: | Voltage - Threshold: | | 1 | 2.71V | | Output: | Reset: | | Open Drain or Open Collector | Active Low | | Reset Timeout: | Operating Temperature: | | | -40°C ~ 125°C (TA) | | Mounting Type: | Package / Case: | | Surface Mount | 8-SOIC (0.154", 3.90mm Width) | | Supplier Device Package: | Base Product Number: | | 8-SOIC | MC33164 | ## **Environmental & Export classification** 8542.39.0001 | RoHS Status: | Moisture Sensitivity Level (MSL): | |------------------|-----------------------------------| | ROHS3 Compliant | 1 (Unlimited) | | REACH Status: | ECCN: | | REACH Unaffected | EAR99 | | HTSUS: | | www.onsemi.com ### Micropower Undervoltage Sensing Circuits ### MC34164, MC33164, NCV33164 The MC34164 series are undervoltage sensing circuits specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is required. These devices offer the designer an economical solution for low voltage detection with a single external resistor. The MC34164 series features a bandgap reference, a comparator with precise thresholds and built–in hysteresis to prevent erratic reset operation, an open collector reset output capable of sinking in excess of 6.0 mA, and guaranteed operation down to 1.0 V input with extremely low standby current. The MC devices are packaged in 3-pin TO-92 (TO-226AA), micro size TSOP-5, 8-pin SOIC-8 and Micro8 surface mount packages. The NCV device is packaged in SOIC-8. Applications include direct monitoring of the 3.0 V or 5.0 V MPU/logic power supply used in appliance, automotive, consumer, and industrial equipment. #### **Features** - Temperature Compensated Reference - Monitors 3.0 V (MC34164–3) or 5.0 V (MC34164–5) Power Supplies - Precise Comparator Thresholds Guaranteed Over Temperature - Comparator Hysteresis Prevents Erratic Reset - Reset Output Capable of Sinking in Excess of 6.0 mA - Internal Clamp Diode for Discharging Delay Capacitor - Guaranteed Reset Operation With 1.0 V Input - Extremely Low Standby Current: As Low as 9.0 μA - Economical TO-92 (TO-226AA), TSOP-5, SOIC-8 and Micro8 Surface Mount Packages - NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes - These Devices are Pb-Free and are RoHS Compliant Figure 1. Representative Block Diagram This device contains 28 active transistors. #### **PIN CONNECTIONS** ### TSOP-5 ### Pin 1. Ground #### 2. Input - 3. Reset - 4. NC - 5. NC ### TO-92 - Pin 1. Reset - Input Ground ### ORDERING INFORMATION See detailed ordering and shipping information on page 7 of this data sheet. ### **DEVICE MARKING INFORMATION** See general marking information in the device marking section on page 8 of this data sheet. #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|--|--|--| | Power Input Supply Voltage | V _{in} | -1.0 to 12 | V | | Reset Output Voltage | Vo | -1.0 to 12 | V | | Reset Output Sink Current | I _{Sink} | Internally
Limited | mA | | Clamp Diode Forward Current, Reset to Input Pin (Note 1) | IF | 100 | mA | | Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air D Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air DM Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air Operating Junction Temperature | P _D
R _{θJA}
P _D
R _{θJA}
T _J | 700
178
700
178
520
240 | mW
°C/W
mW
°C/W
mW
°C/W | | Operating Ambient Temperature Range MC34164 Series MC33164 Series, NCV33164 | T _A | 0 to +70
- 40 to +125 | °C | | Storage Temperature Range | T _{stg} | - 65 to +150 | °C | | Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM) | ESD | 4000
200 | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ### MC34164-3, MC33164-3 SERIES, NCV33164-3 **ELECTRICAL CHARACTERISTICS** (For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies [Notes 2 & 3], unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|--|----------------------|----------------------|-------------------|------| | COMPARATOR | | | | | | | Threshold Voltage High State Output (V _{in} Increasing) Low State Output (V _{in} Decreasing) Hysteresis (I _{Sink} = 100 μA) | V _{IH}
V _{IL}
V _H | 2.55
2.55
0.03 | 2.71
2.65
0.06 | 2.80
2.80
– | V | | RESET OUTPUT | | | | | | | Output Sink Saturation $ (V_{in} = 2.4 \text{ V, } I_{Sink} = 1.0 \text{ mA}) $ $ (V_{in} = 1.0 \text{ V, } I_{Sink} = 0.25 \text{ mA}) $ | V _{OL} | | 0.14
0.1 | 0.4
0.3 | V | | Output Sink Current (V _{in} , Reset = 2.4 V) | I _{Sink} | 6.0 | 12 | 30 | mA | | Output Off-State Leakage
(V _{in} , Reset = 3.0 V)
(V _{in} , Reset = 10 V) | ^I R(leak) | -
- | 0.02
0.02 | 0.5
1.0 | μΑ | | Clamp Diode Forward Voltage, Reset to Input Pin (I _F = 5.0 mA) | V _F | 0.6 | 0.9 | 1.2 | ٧ | | TOTAL DEVICE | • | - | | | - | | Operating Input Voltage Range | V _{in} | 1.0 to 10 | - | _ | V | | Quiescent Input Current $ V_{in} = 3.0 \text{ V} $ $ V_{in} = 6.0 \text{ V} $ | l _{in} | | 9.0
24 | 15
40 | μΑ | - 1. Maximum package power dissipation limits must be observed. ### MC34164-5, MC33164-5 SERIES, NCV33164-5 **ELECTRICAL CHARACTERISTICS** (For typical values $T_A = 25^{\circ}C$, for min/max values T_A is the operating ambient temperature range that applies [Notes 5 & 6], unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|----------------------|-----------|------|------|------| | COMPARATOR | • | • | | | | | Threshold Voltage | | | | | V | | High State Output (V _{in} Increasing) | V_{IH} | 4.15 | 4.33 | 4.45 | | | Low State Output (V _{in} Decreasing) | V_{IL} | 4.15 | 4.27 | 4.45 | | | Hysteresis (I _{Sink} = 100 μA) | V_{H} | 0.02 | 0.09 | _ | | | RESET OUTPUT | | | | | | | Output Sink Saturation | V _{OL} | | | | V | | $(V_{in} = 4.0 \text{ V}, I_{Sink} = 1.0 \text{ mA})$ | | - | 0.14 | 0.4 | | | $(V_{in} = 1.0 \text{ V}, I_{Sink} = 0.25 \text{ mA})$ | | - | 0.1 | 0.3 | | | Output Sink Current (V _{in} , Reset = 4.0 V) | I _{Sink} | 7.0 | 20 | 50 | mA | | Output Off-State Leakage | ^I R(leak) | | | | μΑ | | (V _{in} , Reset = 5.0 V) | | - | 0.02 | 0.5 | | | $(V_{in}, \overline{Reset} = 10 V)$ | | - | 0.02 | 2.0 | | | Clamp Diode Forward Voltage, Reset to Input Pin (I _F = 5.0 mA) | V _F | 0.6 | 0.9 | 1.2 | V | | TOTAL DEVICE | | | | | | | Operating Input Voltage Range | V _{in} | 1.0 to 10 | - | _ | V | | Quiescent Input Current | I _{in} | | | | μΑ | | $V_{in} = 5.0 \text{ V}$ | | - | 12 | 20 | ' | | V _{in} = 10 V | | - | 32 | 50 | | ^{4.} Maximum package power dissipation limits must be observed. Figure 2. MC3X164-3 Reset Output Voltage versus Input Voltage Figure 3. MC3X164-5 Reset Output Voltage versus Input Voltage ^{5.} Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. ^{6.} $T_{low} = 0$ °C for MC34164 $T_{high} = +70$ °C for MC34164 ^{= -40°}C for MC33164, NCV33164 = +125°C for MC33164, NCV33164 ^{7.} NCV prefix is for automotive and other applications requiring site and change control. Figure 4. MC3X164-3 Reset Output Voltage versus Input Voltage Figure 5. MC3X164-5 Reset Output Voltage versus Input Voltage Figure 6. MC3X164-3 Comparator Threshold Voltage versus Temperature Figure 7. MC3X164-5 Comparator Threshold Voltage versus Temperature Figure 8. MC3X164-3 Input Current versus Input Voltage Figure 9. MC3X164-5 Input Current versus Input Voltage Figure 10. MC3X164-3 Reset Output Saturation versus Sink Current Figure 11. MC3X164-5 Reset Output Saturation versus Sink Current Figure 12. Clamp Diode Forward Current versus Voltage Figure 13. Reset Delay Time (MC3X164-5 Shown) A time delayed reset can be accomplished with the addition of C_{DLY} . For systems with extremely fast power supply rise times (< 500 ns) it is recommended that the RC_{DLY} time constant be greater than 5.0 μ s. $V_{th(MPU)}$ is the microprocessor reset input threshold. Figure 14. Low Voltage Microprocessor Reset | | Test Data | | | | | | | | |------------------------|-----------------------|-----------------------|------------------------|--|--|--|--|--| | V _H
(mV) | ΔV _{th} (mV) | R _H
(Ω) | R _L
(kΩ) | | | | | | | 60 | 0 | 0 | 43 | | | | | | | 103 | 1.0 | 100 | 10 | | | | | | | 123 | 1.0 | 100 | 6.8 | | | | | | | 160 | 1.0 | 100 | 4.3 | | | | | | | 155 | 2.2 | 220 | 10 | | | | | | | 199 | 2.2 | 220 | 6.8 | | | | | | | 280 | 2.2 | 220 | 4.3 | | | | | | | 262 | 4.7 | 470 | 10 | | | | | | | 306 | 4.7 | 470 | 8.2 | | | | | | | 357 | 4.7 | 470 | 6.8 | | | | | | | 421 | 4.7 | 470 | 5.6 | | | | | | | 530 | 4.7 | 470 | 4.3 | | | | | | Comparator hysteresis can be increased with the addition of resistor R_H . The hysteresis equation has been simplified and does not account for the change of input current I_{in} as V_{in} crosses the comparator threshold (Figure 8). An increase of the lower threshold $\Delta V_{th(lower)}$ will be observed due to I_{in} which is typically 10 μ A at 4.3 V. The equations are accurate to $\pm 10\%$ with R_H less than 1.0 k Ω and R_L between 4.3 k Ω and 43 k Ω . Figure 15. Low Voltage Microprocessor Reset With Additional Hysteresis (MC3X164-5 Shown) Figure 16. Voltage Monitor Figure 17. Solar Powered Battery Charger Figure 18. MOSFET Low Voltage Gate Drive Protection Using the MC3X164-5 ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|---------------------|--------------------------| | MC33164D-3G | SOIC-8
(Pb-Free) | 98 Units / Rail | | MC33164D-3R2G | SOIC-8
(Pb-Free) | OFOO Units / Tong 9 Dock | | NCV33164D-3R2G* | SOIC-8
(Pb-Free) | 2500 Units / Tape & Reel | | MC33164DM-3R2G | Micro8
(Pb-Free) | 4000 Units / Tape & Reel | | MC33164P-3G | TO-92
(Pb-Free) | 2000 Units / Box | | MC33164P-3RAG | TO-92
(Pb-Free) | 2000 Units / Tape & Reel | | MC33164P-3RPG | TO-92
(Pb-Free) | 2000 Units / Pack | | MC33164D-5G | SOIC-8
(Pb-Free) | 98 Units / Rail | | MC33164D-5R2G | SOIC-8
(Pb-Free) | | | NCV33164D-5R2G* | SOIC-8
(Pb-Free) | 2500 Units / Tape & Reel | | MC33164DM-5R2G | Micro8
(Pb-Free) | 4000 Units / Tape & Reel | | MC33164P-5G | TO-92
(Pb-Free) | 2000 Units / Box | | MC33164P-5RAG | TO-92
(Pb-Free) | 2000 Units / Tape & Reel | | MC33164P-5RPG | TO-92
(Pb-Free) | 2000 Units / Pack | | MC34164D-3G | SOIC-8
(Pb-Free) | 98 Units / Rail | | MC34164D-3R2G | SOIC-8
(Pb-Free) | 2500 Units / Tape & Reel | | MC34164DM-3R2G | Micro8
(Pb-Free) | 4000 Units / Tape & Reel | | MC34164P-3G | TO-92
(Pb-Free) | 2000 Units / Box | | MC34164P-3RPG | TO-92
(Pb-Free) | 2000 Units / Pack | | MC34164D-5G | SOIC-8
(Pb-Free) | 98 Units / Rail | | MC34164D-5R2G | SOIC-8
(Pb-Free) | 2500 Units / Tape & Reel | | MC34164DM-5R2G | Micro8
(Pb-Free) | 4000 Units / Tape & Reel | | MC34164SN-5T1G | TSOP-5
(Pb-Free) | 3000 Units / Tape & Reel | | MC34164P-5G | TO-92
(Pb-Free) | 2000 Units / Box | | MC34164P-5RAG | TO-92
(Pb-Free) | 2000 Units / Tape & Reel | | MC34164P-5RPG | TO-92
(Pb-Free) | 2000 Units / Pack | | | (*) | | ^{*}NCV33164: $T_{low} = -40^{\circ}C$, $T_{high} = +125^{\circ}C$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ### PIN CONNECTIONS AND MARKING DIAGRAMS ### TSOP-5 SN SUFFIX CASE 483 SOIC-8 D SUFFIX CASE 751 Micro8 MC33164DM CASE 846A 8 🗆 🗆 🗆 Micro8 MC34164DM CASE 846A TO-92 MC3x164P-yRA MC3x164P-yRP MC3x164P-y CASE 29 SRC = Device Code x = Device Number 3 or 4 y = Suffix Number 3 or 5 A = Assembly Location L = Wafer Lot Y = Year W = Work Week ■ = Pb-Free ### **MECHANICAL CASE OUTLINE** PACKAGE DIMENSIONS TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D **DATE 05 MAR 2021** ### STRAIGHT LEAD ### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - CONTROLLING DIMENSION: MILLIMETERS - 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. - DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD. | | MILLIMETERS | | | | | | | |-----|-------------------|-------|------|--|--|--|--| | DIM | MIN. | N□M. | MAX. | | | | | | Α | 3.75 | 3.90 | 4.05 | | | | | | A1 | 1.28 | 1.43 | 1.58 | | | | | | b | 0.38 | 0.465 | 0.55 | | | | | | b2 | 0.62 | 0.70 | 0.78 | | | | | | c | 0.35 | 0.40 | 0.45 | | | | | | D | 7.85 | 8.00 | 8.15 | | | | | | E | 4.75 | 4.90 | 5.05 | | | | | | E2 | 3.90 | | | | | | | | е | 1.27 BSC | | | | | | | | L | 13.80 14.00 14.20 | | | | | | | ### STYLES AND MARKING ON PAGE 3 | DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repo
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------------|--|-------------|--|--| | DESCRIPTION: | TO-92 (TO-226) 1 WATT | | PAGE 1 OF 3 | | | onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ### TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D **DATE 05 MAR 2021** ### FORMED LEAD #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - 2. CONTROLLING DIMENSION: MILLIMETERS - 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. - 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD. | | MILLIMETERS | | | | | | |-----|-------------|----------|-------|--|--|--| | DIM | MIN. | N□M. | MAX. | | | | | Α | 3.75 | 3.90 | 4.05 | | | | | A1 | 1.28 | 1.43 | 1.58 | | | | | ø | 0.38 | 0.465 | 0.55 | | | | | ь2 | 0.62 | 0.70 | 0.78 | | | | | С | 0.35 | 0.40 | 0.45 | | | | | D | 7.85 | 8.00 | 8.15 | | | | | E | 4.75 | 4.90 | 5.05 | | | | | E2 | 3.90 | | | | | | | е | | 2.50 BSC | | | | | | L | 13.80 | 14.00 | 14.20 | | | | | L2 | 13.20 | 13.60 | 14.00 | | | | | L3 | 3.00 REF | | | | | | ### STYLES AND MARKING ON PAGE 3 | DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Rep
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------------|---|-------------|--|--| | DESCRIPTION: | TO-92 (TO-226) 1 WATT | | PAGE 2 OF 3 | | | onsemi and ONSeMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ### TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D **DATE 05 MAR 2021** | 2. | EMITTER
BASE
COLLECTOR | | BASE
EMITTER
COLLECTOR | | ANODE
ANODE
CATHODE | | CATHODE
CATHODE
ANODE | | DRAIN
SOURCE
GATE | |----|------------------------------|---------------------------------|------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|----|-----------------------------------| | | GATE | STYLE 7:
PIN 1.
2.
3. | SOURCE
DRAIN | STYLE 8:
PIN 1.
2.
3. | DRAIN
GATE | 2. | BASE 1 | 2. | CATHODE
GATE
ANODE | | 2. | ANODE
CATHODE & ANODE | PIN 1.
2. | MAIN TERMINAL 1 | PIN 1.
2. | ANODE 1
GATE | 2. | EMITTER | 2. | ANODE 1
CATHODE
ANODE 2 | | 2. | ANODE
GATE
CATHODE | STYLE 17:
PIN 1.
2.
3. | COLLECTOR
BASE
EMITTER | STYLE 18:
PIN 1.
2.
3. | ANODE
CATHODE
NOT CONNECTED | STYLE 19:
PIN 1.
2.
3. | GATE
ANODE
CATHODE | 2. | NOT CONNECTED
CATHODE
ANODE | | 2. | | 2. | SOURCE
GATE
DRAIN | | GATE
SOURCE
DRAIN | PIN 1.
2. | EMITTER | 2. | MT 1 | | | V _{CC} | | | PIN 1.
2. | | PIN 1.
2. | NOT CONNECTED
ANODE
CATHODE | | | | | GATE | STYLE 32:
PIN 1.
2.
3. | BASE
COLLECTOR
EMITTER | 2. | RETURN
INPUT
OUTPUT | PIN 1.
2. | INPUT
GROUND
LOGIC | | | ## GENERIC MARKING DIAGRAM* XXXX = Specific Device Code A = Assembly Location L = Wafer Lot Y = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-----------------------|--|-------------|--| | DESCRIPTION: | TO-92 (TO-226) 1 WATT | | PAGE 3 OF 3 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ### **MECHANICAL CASE OUTLINE** PACKAGE DIMENSIONS SOIC-8 NB CASE 751-07 **ISSUE AK** **DATE 16 FEB 2011** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIMETERS | | MILLIMETERS INCHES | | |-----|-------------|------|--------------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 BSC | | 0.050 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | J | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | ### **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package XXXXXX XXXXXX AYWW AYWW H \mathbb{H} Discrete **Discrete** (Pb-Free) XXXXXX = Specific Device Code = Assembly Location Α ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-8 NB | | PAGE 1 OF 2 | | onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ### SOIC-8 NB CASE 751-07 ISSUE AK ### **DATE 16 FEB 2011** | STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 | STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE | |--|---|---|--| | STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE | 7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE | STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd | STYLE 8:
PIN 1. COLLECTOR, DIE #1
2. BASE, #1
3. BASE, #2 | | STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN | STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 | | STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 | STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE | | STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V MON 6. VBULK 7. VBULK 8. VIN | | STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 | | | | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-8 NB | | PAGE 2 OF 2 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ### **MECHANICAL CASE OUTLINE** ### PACKAGE DIMENSIONS ### Micro8 CASE 846A-02 ISSUE K **DATE 16 JUL 2020** С #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - CONTROLLING DIMENSION: MILLIMETERS - DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION. - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DDES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F. - 5. DATUMS A AND B ARE TO BE DETERMINED AT DATUM F. - A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. MOUNTING FOOTPRINT | DIM | MILLIMETERS | | | |-----|-------------|------|------| | MIM | MIN. | N□M. | MAX. | | Α | | | 1.10 | | A1 | 0.05 | 0.08 | 0.15 | | b | 0.25 | 0.33 | 0.40 | | С | 0.13 | 0.18 | 0.23 | | D | 2.90 | 3.00 | 3.10 | | Е | 2.90 | 3.00 | 3.10 | | е | 0.65 BSC | | | | HE | 4.75 | 4.90 | 5.05 | | L | 0.40 | 0.55 | 0.70 | ### **GENERIC MARKING DIAGRAM*** SIDE VIEW XXXX = Specific Device Code Α = Assembly Location Υ = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | STYLE 1: | STYLE 2: | STYLE 3: | |--------------------------|----------------------------|-----------------| | PIN 1. SOURCE | PIN 1. SOURCE 1 | PIN 1. N-SOURCE | | 2. SOURCE | 2. GATE 1 | 2. N-GATE | | SOURCE | SOURCE 2 | 3. P-SOURCE | | 4. GATE | 4. GATE 2 | 4. P-GATE | | 5. DRAIN | 5. DRAIN 2 | 5. P-DRAIN | | 6. DRAIN | 6. DRAIN 2 | 6. P-DRAIN | | 7. DRAIN | 7. DRAIN 1 | 7. N-DRAIN | | 8. DRAIN | 8. DRAIN 1 | 8. N-DRAIN | | | | | | DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | MICRO8 | | PAGE 1 OF 1 | | onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales ### **OUR CERTIFICATE** DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com Tel: +00 852-30501935 RFQ Email: Info@DiGi-Electronics.com