

MC74LCX74DR2 Datasheet

DiGi Electronics Part Number	MC74LCX74DR2-DG
Manufacturer	onsemi
Manufacturer Product Number	MC74LCX74DR2
Description	IC FF D-TYPE DUAL 1BIT 14SOIC
Detailed Description	Flip Flop 2 Element D-Type 1 Bit Positive Edge 14-S OIC (0.154", 3.90mm Width)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MC74LCX74DR2	onsemi
Series:	Product Status:
74LCX	Obsolete
Function:	Туре:
Set(Preset) and Reset	D-Type
Output Type:	Number of Elements:
Complementary	2
Number of Bits per Element:	Clock Frequency:
1	150 MHz
Max Propagation Delay @ V, Max CL:	Trigger Type:
7ns @ 3.3V, 50pF	Positive Edge
Current - Output High, Low:	Voltage - Supply:
24mA, 24mA	2V ~ 3.6V
Current - Quiescent (lq):	Input Capacitance:
10 μΑ	7 pF
Operating Temperature:	Mounting Type:
-40°C ~ 85°C (TA)	Surface Mount
Supplier Device Package:	Package / Case:
14-SOIC	14-SOIC (0.154", 3.90mm Width)
Base Product Number:	
74LCX74	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

onsemi

Low-Voltage CMOS Dual D-Type Flip-Flop

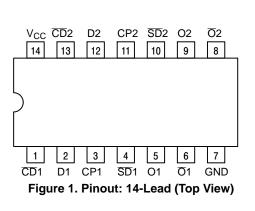
With 5 V-Tolerant Inputs

MC74LCX74

The MC74LCX74 is a high performance, dual D-type flip-flop with asynchronous clear and set inputs and complementary (O, \overline{O}) outputs. It operates from a 1.65 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX74 inputs to be safely driven from 5.0 V devices.

The MC74LCX74 consists of 2 edge-triggered flip-flops with individual D-type inputs. The flip-flop will store the state of individual D inputs, that meet the setup and hold time requirements, on the LOW-to-HIGH Clock (CP) transition.

Features


- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 5.0 V Tolerant Inputs Interface Capability With 5.0 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability at $V_{CC} = 3.0 V$
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 100 mA
- ESD Performance: Human Body Model >2000 V
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

MC74LCX74

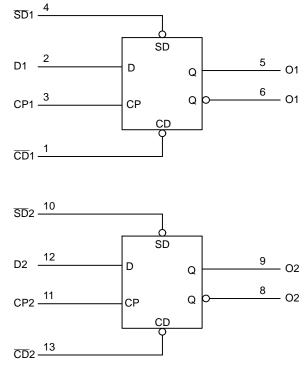


Figure 2. Logic Diagram

PIN NAMES

Pins	Function
CP1, CP2	Clock Pulse Inputs
D1-D2	Data Inputs
<u>CD</u> 1, <u>CD</u> 2	Direct Clear Inputs
<u>SD</u> 1, <u>SD</u> 2	Direct Set Inputs
On- O n	Outputs

TRUTH TABLE

	Inp	uts		Outputs		
SDn	CDn	CPn	Dn	On	Ōn	Operating Mode
L	Н	Х	Х	Н	L	Asynchronous Set
н	L	х	х	L	н	Asynchronous Clear
L	L	х	Х	Н	н	Undetermined
Н	Н	\uparrow	h	Н	L	
н	н	\uparrow	ļ	L	н	Load and Read Register
Н	Н	1	Х	NC	NC	Hold

н = High Voltage Level

= High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition h

= Low Voltage Level L

= Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition 1

NC = No Change

= High or Low Voltage Level and Transitions are Acceptable X ↑

= Low-to-High Transition

≄ = Not a Low-to-High Transition

For I_{CC} reasons, DO NOT FLOAT Inputs

MC74LCX74

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +6.5	V	
VI	DC Input Voltage (Note 1)	-0.5 to +6.5	V	
Vo	DC Output Voltage (Note 1)	Active-Mode (High or Low State)	–0.5 to V _{CC} + 0.5	V
		Tri-State Mode	-0.5 to +6.5	
		Power-Down Mode ($V_{CC} = 0 V$)	-0.5 to +6.5	
Ι _{ΙΚ}	DC Input Diode Current V _I < GND	•	-50	mA
I _{OK}	DC Output Diode Current V _O < GND		-50	mA
Ι _Ο	DC Output Source/Sink Current	±50	mA	
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Gr	±100	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
TL	Lead Temperature, 1 mm from Case for	260	°C	
TJ	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 1)	SOIC-14	116	°C/W
		TSSOP-14	150	
PD	Power Dissipation in Still Air at 125°C	SOIC-14	116	mW
		TSSOP-14	833	
MSL	Moisture Sensitivity	-	Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model	2000	V
		Charged Device Model	N/A	1

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_O absolute maximum rating must be observed.

 Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51–7.
HBM tested to EIA / JESD22–A114–A. CDM tested to JESD22–C101–A. JEDEC recommends that ESD qualification to EIA/JESD22–A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol		Min	Тур	Max	Unit	
V _{CC}	Supply Voltage	Operating	1.65	2.5, 3.3	5.5	V
		Data Retention Only	1.5	2.5, 3.3	5.5	
VI	Digital Input Voltage	÷	0	-	5.5	V
V _O	Output Voltage	Active Mode (High or Low State)	0	-	V _{CC}	V
		Tri-State Mode	0	-	5.5	
		Power Down Mode ($V_{CC} = 0 V$)	0	-	5.5	1
T _A	Operating Free-Air Temperature		-40	-	+125	°C
t _r , t _f	Input Rise or Fall Rate	V _{CC} = 1.65 V to 1.95 V	0	-	20	nS/V
		V_{CC} = 2.3 V to 2.7 V	0	-	20	1
		V_{IN} from 0.8 V to 2.0 V, V_{CC} = 3.0 V	0	-	10]
		V_{CC} = 4.5 V to 5.5 V	0	-	5]

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

MC74LCX74

DC ELECTRICAL CHARACTERISTICS

				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		$T_A = -40^{\circ}C$		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage		1.65 – 1.95	$0.65 \times V_{CC}$	_	0.65 x V _{CC}	-	V
			2.3 – 2.7	1.7	-	1.7	-	
			3.0 - 3.6	2.0	-	2.0	-	
			4.5 – 5.5	0.70 x V _{CC}	_	0.70 x V _{CC}	_	
VIL	LOW Level Input Voltage		1.65 – 1.95	-	0.35 x V _{CC}	-	0.35 x V _{CC}	V
			2.3 – 2.7	_	0.7	_	0.7	
			3.0 - 3.6	_	0.8	_	0.8	
			4.5 – 5.5	-	0.30 x V _{CC}	-	0.30 x V _{CC}	
V _{OH}	High-Level Output Voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$	4.05 += 5.5	V 01		V 01		V
		I _{OH} = –100 μA I _{OH} = –4 mA	1.65 to 5.5 1.65	V _{CC} – 0.1 1.29	-	V _{CC} – 0.1 1.29	_	
		$I_{OH} = -8 \text{ mA}$	2.3	1.23	_	1.23	_	
		$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	2.2	_	
		$I_{OH} = -16 \text{ mA}$	3.0	2.4	_	2.4	_	
		I _{OH} = -24 mA	3.0	2.2	_	2.2	_	
		I _{OH} = -32 mA	4.5	3.7	-	3.7	-	
V _{OL}	Low-Level Output Voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$						V
		I _{OL} = 100 μA	1.65 to 5.5	-	0.1	-	0.1	
		$I_{OL} = 4 \text{ mA}$	1.65	-	0.24	-	0.24	
		I _{OL} = 8 mA	2.3	-	0.3	-	0.3	
		I _{OL} = 12 mA	2.7	-	0.4	-	0.4	
		I _{OL} = 16 mA	3.0	-	0.4	-	0.4	
		$I_{OL} = 24 \text{ mA}$	3.0	-	0.55	-	0.55	
		I _{OL} = 32 mA	4.5	-	0.6	-	0.6	
I	Input Leakage Current	$V_I = 0$ to 5.5 V	3.6	_	±5.0	_	±5.0	μA
I _{OFF}	Power Off Leakage Current	$V_{I} = 5.5 V \text{ or}$ $V_{O} = 5.5 V$	0	-	10	-	10	μA
I _{CC}	Quiescent Supply Current	$V_{I} = 5.5 \text{ V or GND}$	3.6	-	10	-	10	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6 V$	2.3 to 3.6	-	500	-	500	μA

AC ELECTRICAL CHARACTERISTICS

				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		$T_A = -40^{\circ}C$	to +125°C	
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay,	Waveform 1	1.65 to 1.95	-	12.5	-	12.5	ns
	CPn to (On or On)		2.3 to 2.7	_	8.4	-	8.4	
		2.7	_	8.0	-	8.0		
			3.0 to 3.6	_	7.0	-	7.0	
			4.5 to 5.5	_	5.0	-	5.0	
t _{PLH} , t _{PHL}	Propagation Delay,	Waveform 2	1.65 to 1.95	_	12.5	-	12.5	ns
	$(\overline{SDn} \text{ or } \overline{CDn})$ to $(On \text{ or } \overline{On})$		2.3 to 2.7	_	8.4	-	8.4	
		2.7	_	8.0	-	8.0		
			3.0 to 3.6	_	7.0	-	7.0	
			4.5 to 5.5	_	5.0	-	5.0	

MC74LCX74

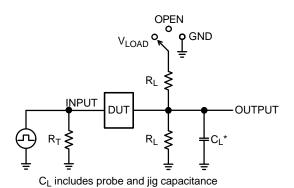
AC ELECTRICAL CHARACTERISTICS (continued)

				$T_A = -40^\circ$	C to +85°C	T _A = -40°C	to +125°C		
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Max	Min	Max	Uni	
f _{max}	Clock Pulse Frequency	Waveform 1	1.65 to 1.95	90	-	90	-	MHz	
			2.3 to 2.7	150	-	150	-		
			2.7	150	-	150	-		
			3.0 to 3.6	150	-	150	-		
			4.5 to 5.5	150	-	150	-		
ts	Setup Time,	Waveform 1	1.65 to 1.95	4.0	-	4.0	-	ns	
	HIGH or LOW Dn to CPn		2.3 to 2.7	4.0	-	4.0	-		
			2.7	2.5	-	2.5	-		
			3.0 to 3.6	2.5	-	2.5	-		
			4.5 to 5.5	2.5	-	2.5	-		
t _h	Hold Time,	Waveform 1	1.65 to 1.95	2.0	-	2.0	-	ns	
	HIGH or LOW Dn to CPn		2.3 to 2.7	2.0	-	2.0	-		
			2.7	1.5	-	1.5	-		
			3.0 to 3.6	1.5	-	1.5	-		
			4.5 to 5.5	1.5	-	1.5	-	1	
t _W Pulse Width, CPn HIGH or LOW		Waveform 4	1.65 to 1.95	4.0	_	4.0	-	ns	
		CPn HIGH or LOW		2.3 to 2.7	4.0	-	4.0	-	
			2.7	3.3	-	3.3	-		
			3.0 to 3.6	3.3	-	3.3	-		
			4.5 to 5.5	3.3	_	3.3	-		
	Pulse Width,	Waveform 4	1.65 to 1.95	4.0	_	4.0	-	ns	
	SDn or CDn LOW		2.3 to 2.7	4.0	_	4.0	-		
			2.7	3.6	_	3.6	-		
			3.0 to 3.6	3.3	_	3.3	-		
			4.5 to 5.5	3.3	_	3.3	-		
t _{rec}	Recovery Time,	Waveform 3	1.65 to 1.95	4.5	_	4.5	-	ns	
	SDn or CDn TO CPn		2.3 to 2.7	4.5	_	4.5	-		
			2.7	3.0	_	3.0	_		
			3.0 to 3.6	2.5	_	2.5	_		
			4.5 to 5.5	2.5	-	2.5	-		
t _{OSHL} ,	Output to Output Skew		1.65 to 1.95	_	-	_	_	ns	
t _{OSLH}			2.3 to 2.7	-	-	-	-		
			2.7	_	-	-	-		
			3.0 to 3.6	_	1.0	_	1.0		
			4.5 to 5.5	_	_	_	_		

5. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

MC74LCX74

DYNAMIC SWITCHING CHARACTERISTICS

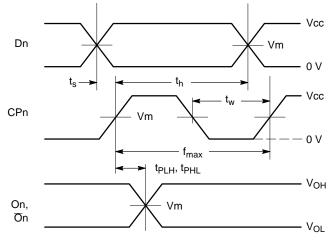

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 6)			0.8 0.6		V V
V _{OLV}	Dynamic LOW Valley Voltage (Note 6)	$ \begin{array}{l} {\sf V}_{CC} = 3.3 {\sf V}, {\sf C}_L = 50 {\sf pF}, {\sf V}_{IH} = 3.3 {\sf V}, {\sf V}_{IL} = 0 {\sf V} \\ {\sf V}_{CC} = 2.5 {\sf V}, {\sf C}_L = 30 {\sf pF}, {\sf V}_{IH} = 2.5 {\sf V}, {\sf V}_{IL} = 0 {\sf V} \end{array} $		-0.8 -0.6		V V

 Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

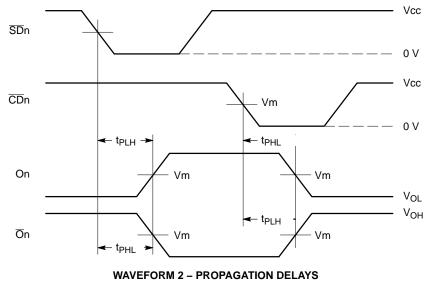
CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF

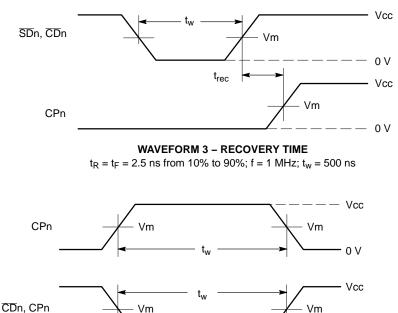
MC74LCX74



 R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$


f = 1 MHz, t_W = 500 ns

Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	V _{LOAD}
t _{PHZ} / t _{PZH}	GND



 $t_R = t_F = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_W = 500$ ns

Figure 4. AC Waveforms

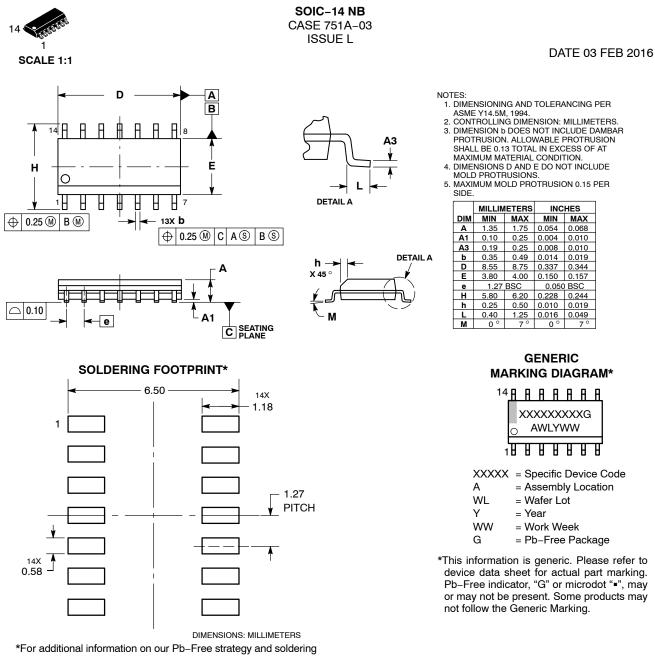


WAVEFORM 4 – PULSE WIDTH

 $\label{eq:transform} \begin{array}{l} t_R = t_F = 2.5 \text{ ns (or fast as required) from 10\% to 90\%;} \\ \text{Output requirements: } V_{OL} \leq 0.8 \text{ V}, V_{OH} \geq 2.0 \text{ V} \end{array}$

0 V

V _{CC} , V	R_{L}, Ω	C _L , pF	V _{LOAD}	V _m , V	V _Y , V
1.65 to 1.95	500	30	2 x V _{CC}	V _{CC} / 2	0.15
2.3 to 2.7	500	30	2 x V _{CC}	V _{CC} / 2	0.15
2.7	500	50	6 V	1.5	0.3
3.0 to 3.6	500	50	6 V	1.5	0.3
4.5 to 5.5	500	50	2 x V _{CC}	V _{CC} / 2	0.3


ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
MC74LCX74DG	LCX74G	SOIC-14 (Pb-Free, Halide Free)	55 Units / Rail
MC74LCX74DR2G	LCX74G	SOIC–14 (Pb-Free, Halide Free)	2500 Units / Tape & Reel
MC74LCX74DTG	LCX 74	TSSOP-14 (Pb-Free, Halide Free)	96 Units / Rail
MC74LCX74DTR2G	LCX 74	TSSOP-14 (Pb-Free, Halide Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

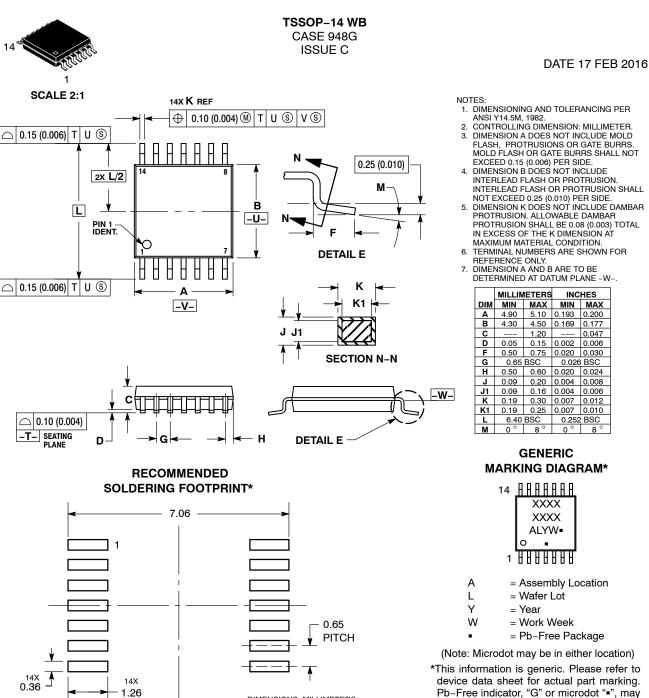
*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED 0	
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	roducts for any particular

SOIC-14 CASE 751A-03 ISSUE L


DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5:	STYLE 6:	STYLE 7:	STYLE 8:
PIN 1. COMMON CATHODE	PIN 1. CATHODE	PIN 1. ANODE/CATHODE	PIN 1. COMMON CATHODE
2. ANODE/CATHODE	2. CATHODE	2. COMMON ANODE	2. ANODE/CATHODE
3. ANODE/CATHODE	3. CATHODE	3. COMMON CATHODE	3. ANODE/CATHODE
4. ANODE/CATHODE	4. CATHODE	4. ANODE/CATHODE	4. NO CONNECTION
5. ANODE/CATHODE	5. CATHODE	5. ANODE/CATHODE	5. ANODE/CATHODE
6. NO CONNECTION	6. CATHODE	6. ANODE/CATHODE	6. ANODE/CATHODE
7. COMMON ANODE	7. CATHODE	7. ANODE/CATHODE	7. COMMON ANODE
8. COMMON CATHODE	8. ANODE	8. ANODE/CATHODE	8. COMMON ANODE
9. ANODE/CATHODE	10. ANODE	9. ANODE/CATHODE	9. ANODE/CATHODE
10. ANODE/CATHODE	11. ANODE	10. ANODE/CATHODE	10. ANODE/CATHODE
11. ANODE/CATHODE	11. ANODE	11. COMMON CATHODE	11. NO CONNECTION
12. ANODE/CATHODE	12. ANODE	12. COMMON CATHODE	12. ANODE/CATHODE
13. NO CONNECTION	13. ANODE	13. ANODE/CATHODE	13. ANODE/CATHODE
14. COMMON ANODE	14. ANODE	14. ANODE/CATHODE	14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation			

DIMENSIONS: MILLIMETERS

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/suport/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.