

MC74LVX132DTG Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MC74LVX132DTG-DG

Manufacturer onsemi

Manufacturer Product Number MC74LVX132DTG

Description IC GATE NAND 4CH 2-INP 14TSSOP

Detailed Description NAND Gate IC 4 Channel 14-TSSOP

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MC74LVX132DTG	onsemi
Series:	Product Status:
74LVX	Active
Logic Type:	Number of Circuits:
NAND Gate	4
Number of Inputs:	Features:
2	
Voltage - Supply:	Current - Quiescent (Max):
2V ~ 3.6V	2 μΑ
Current - Output High, Low:	Input Logic Level - Low:
4mA, 4mA	0.3V ~ 1V
Input Logic Level - High:	Max Propagation Delay @ V, Max CL:
1.6V ~ 2.6V	15.4ns @ 3.3V, 50pF
Operating Temperature:	Mounting Type:
-40°C ~ 125°C	Surface Mount
Supplier Device Package:	Package / Case:
14-TSSOP	14-TSSOP (0.173", 4.40mm Width)
Base Product Number:	
74LVX132	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

8542.39.0001

1

Quad 2-Input NAND Schmitt Trigger

MC74LVX132

The MC74LVX132 is an advanced high speed CMOS Schmitt NAND trigger fabricated with silicon gate CMOS technology.

Pin configuration and function are the same as the MC74LVX00, but the inputs have hysteresis.

The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to $6.5~\rm V$, allowing the interface of $5.0~\rm V$ systems to $3.0~\rm V$ systems.

Features

- High Speed: $t_{PD} = 5.8 \text{ ns}$ (Typ) at $V_{CC} = 3.3 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Low Noise: V_{OLP} = 0.5 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: Human Body Model > 2000 V
- These Devices are Pb-Free and are RoHS Compliant

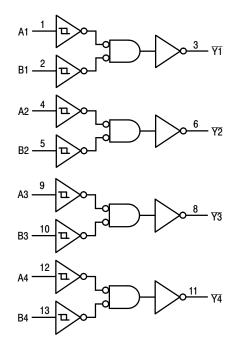
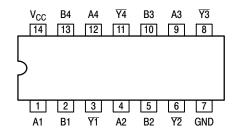


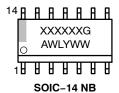
Figure 1. Logic Diagram

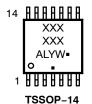
FUNCTION TABLE

A Input	B Input	Y Output
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L



SOIC-14 NB D SUFFIX CASE 751A


TSSOP-14 DT SUFFIX CASE 948G


PIN ASSIGNMENT

14-Lead (Top View)

MARKING DIAGRAMS

XXX = Specific Device Code
A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to +6.5	V
V _{OUT}	DC Output Voltage		-0.5 to $V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current V _I < GND		-20	mA
I _{OK}	DC Output Diode Current V _O < GND		±20	mA
I _{OUT}	DC Output Sink Current		±25	mA
I _{CC}	DC Supply Current per Supply Pin		±50	mA
T _{STG}	Storage Temperature Range		−65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature under Bias		+ 150	°C
θJA	Thermal Resistance	SOIC TSSOP	116 150	°C/W
P _D	Power Dissipation in Still Air at 25°C	SOIC TSSOP	1077 833	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating Oxygen Index: 30% - 35%		UL 94-V0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Charged Device Model (Note 2)	> 2000 N/A	V
I _{Latchup}	Latchup Performance Above V _{CC} and Below	v GND at 85°C (Note 3)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A.

- Tested to JESD22-C101-A.
 Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	Supply Voltage		2.0	3.6	V
VI	Input Voltage (Note 4)		0	5.5	V
V _O	Output Voltage (HIGH or LOW State)		0	5.5	V
T _A	Operating Free-Air Temperature		-40	+ 125	°C
Δt/ΔV	Input Transition Rise or Fall Rate	$V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$	0	100	ns/V

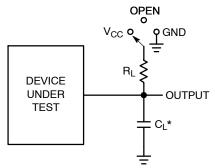
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	7	Γ _A = 25°(;	T _A = ≤	≤ 85°C	T _A = ≤	125°C	
Symbol	Parameter	Test Conditions	v	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage (Figure 4)		2.0 3.0 3.6	1.15 1.50 1.70	1.31 1.82 2.12	1.60 2.25 2.60	1.15 1.50 1.70	1.60 2.25 2.60	1.15 1.50 1.70	1.60 2.25 2.60	٧
V _{T-}	Negative Threshold Voltage (Figure 4)		2.0 3.0 3.6	0.30 0.75 1.00	0.64 1.13 1.46	0.9 1.45 1.90	0.30 0.75 1.00	0.90 1.45 1.90	0.30 0.75 1.00	0.90 1.45 1.90	٧
V _H	Hysteresis Voltage (Figure 4)		2.0 3.0 3.6	0.30 0.30 0.35	0.70 0.76 0.69	1.30 1.50 1.60	0.30 0.30 0.35	1.30 1.50 1.60	0.30 0.30 0.35	1.30 1.50 1.60	٧
V _{OH}	Minimum High-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	I _{OH} = - 50 μA I _{OH} = - 50 μA I _{OH} = - 4 mA	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0		1.9 2.9 2.48		1.9 2.9 2.34		V
V _{OL}	Maximum Low-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 50 \mu A$ $I_{OL} = 50 \mu A$ $I_{OL} = 4 \text{ mA}$	2.0 3.0 3.0		0.0 0.0	0.1 0.1 0.36		0.1 0.1 0.44		0.1 0.1 0.52	V
I _{in}	Maximum Input Leakage Current	V _{in} = 5.5 V or GND	3.6			±0.1		±1.0		±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{in} = V_{CC}$ or GND	3.6			2.0		20		20	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$)

				-	Γ _A = 25°0)	T _A = ≤	≤ 85°C	T _A = ≤	125°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay,	V _{CC} = 2.7V	C _L = 15pF C _L = 50pF		7.0 10.0	11.0 16.0	1.0 1.0	13.0 18.7	1.0 1.0	15.0 20.0	ns
	A or B to \overline{Y}	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 15pF C _L = 50pF		5.8 8.3	10.6 15.4	1.0 1.0	12.5 17.5	1.0 1.0	14.5 19.5	
t _{OSHL} ,	t _{OSHL} , Output to Output Skew	V _{CC} = 2.7V	C _L = 50pF			1.5		1.5		1.5	ns
toslh	(Note 5)	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 50pF			1.5		1.5		1.5	
C _{in}	Maximum Input Capacitance				4	10		10		10	pF
				Typical @ 25°C, V _{CC} = 5.0 V							
C _{PD}	Power Dissipation Capacit	tance (Note 5)					11				pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}/4$ (per gate). C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}, C_L = 50 \text{pF}, V_{CC} = 5.0 \text{ V})$

		T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.3	-0.5	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		2.0	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		0.8	V

Test	Switch Position	CL	R _L
t _{PLH} / t _{PHL}	Open	See AC	1 kΩ
t _{PLZ} / t _{PZL}	V _{CC}	Charac- terisitcs	
t _{PHZ} / t _{PZH}	GND	Table	

Figure 2. Test Circuit

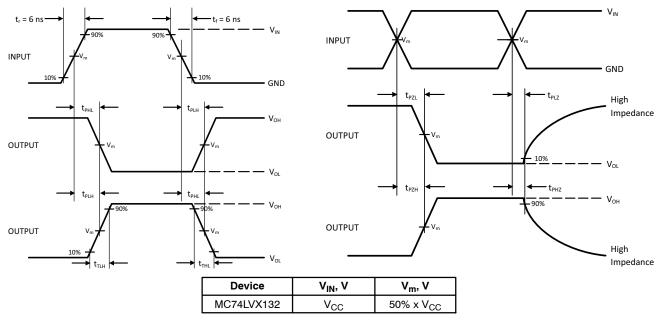


Figure 3. Switching Waveforms

 $^{^{\}star}C_{L}$ Includes probe and jig capacitance

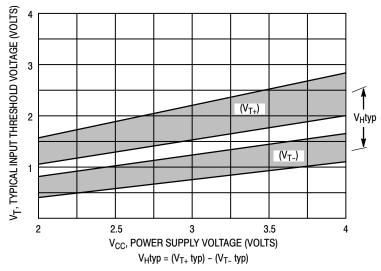


Figure 4. Typical Input Threshold, V_{T_+} , V_{T_-} versus Power Supply Voltage

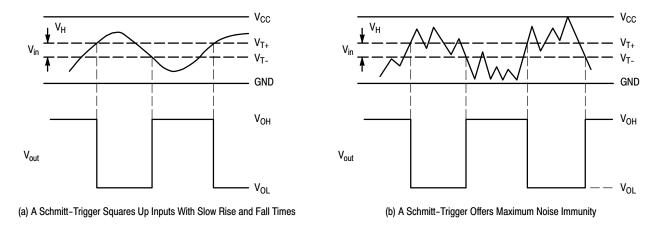


Figure 5. Typical Schmitt-Trigger Applications

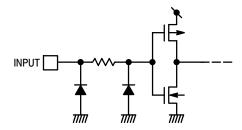


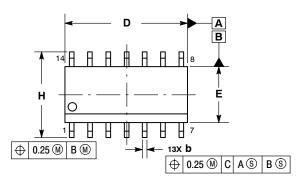
Figure 6. Input Equivalent Circuit

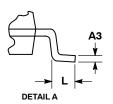
ORDERING INFORMATION

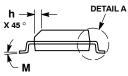
Device	Marking	Package	Shipping [†]
MC74LVX132DR2G	LVX132	SOIC-14	2500 Tape & Reel
MC74LVX132DTG	LVX 132	TSSOP-14	96 Units / Rail
MC74LVX132DTR2G	LVX 132	TSSOP-14	2500 Tape & Reel

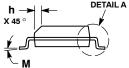
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE

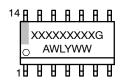

PACKAGE DIMENSIONS




△ 0.10


SOIC-14 NB CASE 751A-03 ISSUE L

DATE 03 FEB 2016



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
- MAXIMUM MATERIAL CONDITION.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	1.35	1.75	0.054	0.068	
A1	0.10	0.25	0.004	0.010	
АЗ	0.19	0.25	0.008	0.010	
b	0.35	0.49	0.014	0.019	
D	8.55	8.75	0.337	0.344	
Е	3.80	4.00	0.150	0.157	
е	1.27 BSC		0.050	BSC	
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.019	
Ĺ	0.40	1.25	0.016	0.049	
М	0 °	7°	0 °	7°	

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

C SEATING PLANE

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2		

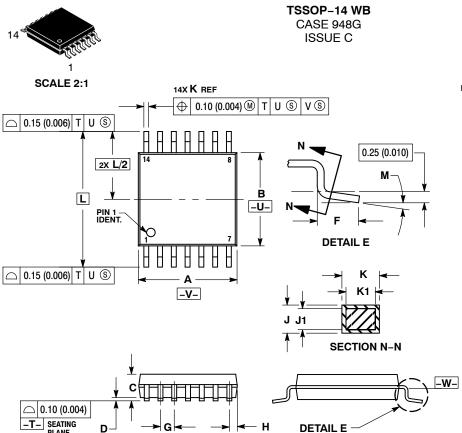
onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE


DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

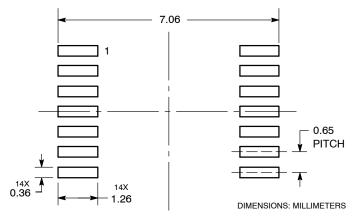
NOTES.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: MILLIMETER.

3. DIMENSION A DOES NOT INCLUDE MOLD

DATE 17 FEB 2016


- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	o°	8 °	0 °	8 °

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot = Year = Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1	

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com