

MJD2955T4G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MJD2955T4G-DG

Manufacturer onsemi

Manufacturer Product Number MJD2955T4G

Description TRANS PNP 60V 10A DPAK

Detailed Description Bipolar (BJT) Transistor PNP 60 V 10 A 2MHz 1.75 W

Surface Mount DPAK

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MJD2955T4G	onsemi
Series:	Product Status:
	Active
Transistor Type:	Current - Collector (Ic) (Max):
PNP	10 A
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
60 V	8V @ 3.3A, 10A
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ lc, Vce:
50μΑ	20 @ 4A, 4V
Power - Max:	Frequency - Transition:
1.75 W	2MHz
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Package / Case:	Supplier Device Package:
TO-252-3, DPAK (2 Leads + Tab), SC-63	DPAK
Base Product Number:	
MJD2955	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

Complementary Power Transistors

DPAK for Surface Mount Applications

Designed for general purpose amplifier and low speed switching applications.

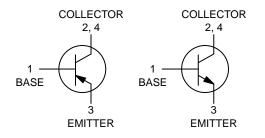
Features

- Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
- Straight Lead Version in Plastic Sleeves ("-1" Suffix)
- Electrically Similar to MJE2955 and MJE3055
- High Current Gain-Bandwidth Product
- Epoxy Meets UL 94 V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	60	Vdc
Collector-Base Voltage	V _{CB}	70	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current	I _C	10	Adc
Base Current	I _B	6	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D [†]	20 0.16	W W/°C
Total Power Dissipation (Note 1) @ T _A = 25°C Derate above 25°C	P _D	1.75 0.014	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C
ESD - Human Body Model	HBM	3B	V
ESD – Machine Model	MM	С	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

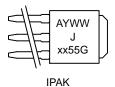


ON Semiconductor®

http://onsemi.com

SILICON POWER TRANSISTORS 10 AMPERES 60 VOLTS, 20 WATTS

COMPLEMENTARY



DPAK CASE 369C STYLE 1

IPAK CASE 369D STYLE 1

MARKING DIAGRAMS

DPAK

G

= Assembly Location

Y = Year WW = Work Week

Jxx55 = Device Codex = 29 or 30

ORDERING INFORMATION

= Pb-Free Package

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

[†]Safe Area Curves are indicated by Figure 1. Both limits are applicable and must be observed.

These ratings are applicable when surface mounted on the minimum pad sizes recommended.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	6.25	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	71.4	°C/W

^{2.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	+		1	4
Collector–Emitter Sustaining Voltage (Note 3) $(I_C = 30 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	60	_	Vdc
Collector Cutoff Current $(V_{CE} = 30 \text{ Vdc}, I_B = 0)$	I _{CEO}	-	50	μAdc
Collector Cutoff Current $(V_{CE} = 70 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc})$ $(V_{CE} = 70 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}, T_C = 150^{\circ}\text{C})$	ICEX	<u>-</u>	0.02 2	mAdc
Collector Cutoff Current $(V_{CB} = 70 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 70 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C})$	Ісво	- -	0.02 2	mAdc
Emitter Cutoff Current (V _{BE} = 5 Vdc, I _C = 0)	I _{EBO}	-	0.5	mAdc
ON CHARACTERISTICS				
DC Current Gain (Note 3) (I _C = 4 Adc, V _{CE} = 4 Vdc) (I _C = 10 Adc, V _{CE} = 4 Vdc)	h _{FE}	20 5	100	-
Collector–Emitter Saturation Voltage (Note 3) (I _C = 4 Adc, I _B = 0.4 Adc) (I _C = 10 Adc, I _B = 3.3 Adc)	V _{CE(sat)}	- -	1.1 8	Vdc
Base–Emitter On Voltage (Note 3) (I _C = 4 Adc, V _{CE} = 4 Vdc)	V _{BE(on)}	-	1.8	Vdc
DYNAMIC CHARACTERISTICS	·			
Current–Gain – Bandwidth Product (I _C = 500 mAdc, V _{CE} = 10 Vdc, f = 500 kHz)	f _⊤	2	_	MHz
Pulse Test: Pulse Width < 300 us Duty Cycle < 2%	+ + + + + + + + + + + + + + + + + + + +			

^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

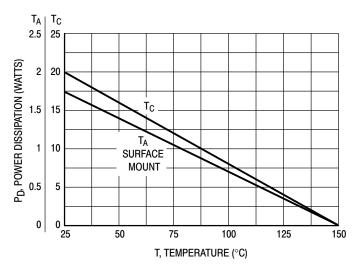


Figure 1. Power Derating

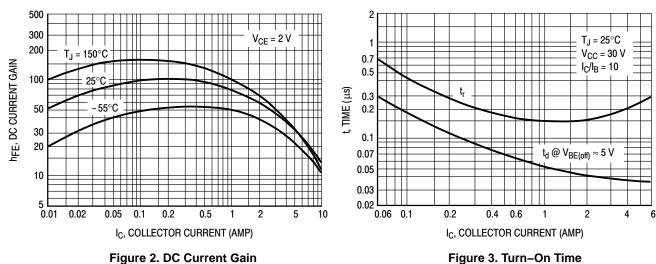


Figure 2. DC Current Gain

1.4

1.2

8.0

0.6

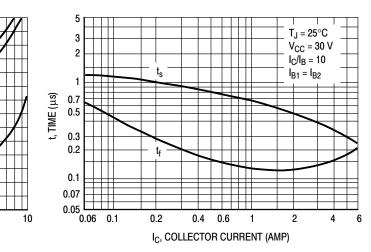
0.4

0.2

0

0.1

V, VOLTAGE (VOLTS)


 $T_J = 25^{\circ}C$

 $V_{BE(sat)} @ I_C/I_B = 10$

 V_{BE} @ V_{CE} = 2 V

 $V_{CE(sat)} @ I_C/I_B = 10$

0.2 0.3

I_C, COLLECTOR CURRENT (AMP) Figure 4. "On" Voltages, MJD3055

Figure 5. Turn-Off Time

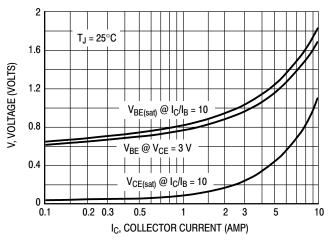
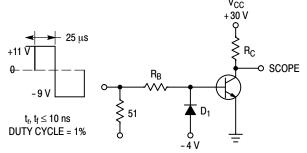



Figure 6. "On" Voltages, MJD2955

 R_B and R_C VARIED TO OBTAIN DESIRED CURRENT LEVELS $D_1 \ \text{MUST BE FAST RECOVERY TYPE, eg:} \\ 1N5825 \ \text{USED ABOVE I}_B \approx 100 \ \text{mA} \\ \text{MSD6100 USED BELOW I}_B \approx 100 \ \text{mA} \\ \label{eq:master}$

Figure 7. Switching Time Test Circuit

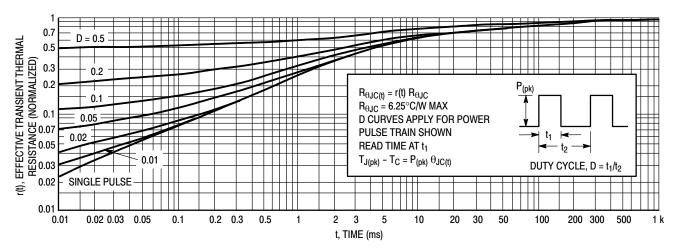


Figure 8. Thermal Response

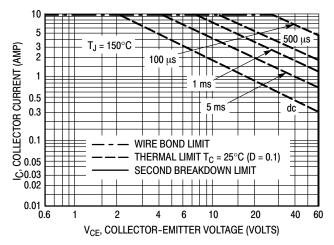


Figure 9. Maximum Forward Bias Safe Operating Area

Forward Bias Safe Operating Area Information

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

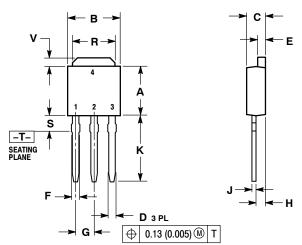
The data of Figure 9 is based on $T_{J(pk)} = 150^{\circ} C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ} C$. $T_{J(pk)}$ may be calculated from the data in Figure 8. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]
MJD2955G	DPAK (Pb-Free)	369C	75 Units / Rail
MJD2955-1G	IPAK (Pb-Free)	369D	75 Units / Rail
MJD2955T4G	DPAK (Pb-Free)	369C	2,500 / Tape & Reel
NJVMJD2955T4G*	DPAK (Pb-Free)	369C	2,500 / Tape & Reel
MJD3055G	DPAK (Pb-Free)	369C	75 Units / Rail
MJD3055T4G	DPAK (Pb-Free)	369C	2,500 / Tape & Reel
NJVMJD3055T4G*	DPAK (Pb-Free)	369C	2,500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

DPAK INSERTION MOUNT

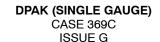
CASE 369 ISSUE O

DATE 02 JAN 2000

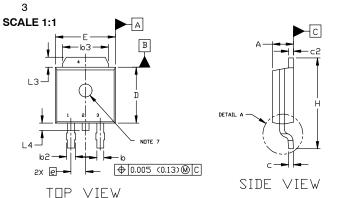
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090 BSC		2.29	BSC
Н	0.034	0.040	0.87	1.01
L	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
٧	0.030	0.050	0.77	1.27

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2


DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1	

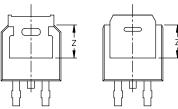
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

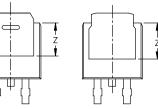


MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DATE 31 MAY 2023




- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z.
- L3, AND Z.

 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 DETININAL MOLD ESCALUES.

- OPTIONAL MOLD FEATURE.

DIM	INC	HES	MILLIM	IETERS
ויונע	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Ε	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

BOTTOM VIEW

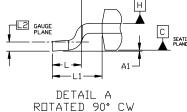
2.58

[0.102]

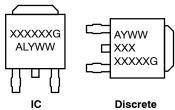
1.60

[0.063]

5.80


[0.228]

6.17 [0.243] RECOMMENDED MOUNTING FOOTPRINT*


*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

BOTTOM VIEW AL TERNATE

CONSTRUCTIONS

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

STYLE 1: PIN 1. BASE STYLE 2: PIN 1. GATE STYLE 3: PIN 1. ANODE 2. COLLECTOR 2. DRAIN 2. CATHODE 3 SOURCE 3 FMITTER 3 ANODE

STYLE 8:

4. DRAIN

6.20

[0.244]

3.00

[0.118]

STYLE 4: PIN 1. CATHODE STYLE 5: PIN 1. GATE 2. ANODE 2. ANODE 3 CATHODE 3 GATE 4. CATHODE 4. ANODE ANODE

> STYLE 9: STYLE 10: PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE 3 RESISTOR ADJUST 3 CATHODE CATHODE 4. ANODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

COLLECTOR

STYLE 6:

PIN 1. MT1 2. MT2

3 GATE

98AON10527D

PIN 1. N/C 2. CATHODE 3. ANODE

4. CATHODE

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

STYLE 7: PIN 1. GATE 2. COLLECTOR

3 FMITTER

4. COLLECTOR

DPAK (SINGLE GAUGE)

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com