

MJE18004G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MJE18004G-DG

Manufacturer onsemi

Manufacturer Product Number MJE18004G

Description TRANS NPN 450V 5A TO220

Detailed Description Bipolar (BJT) Transistor NPN 450 V 5 A 13MHz 75 W

Through Hole TO-220

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MJE18004G	onsemi
Series:	Product Status:
SWITCHMODE™	Active
Transistor Type:	Current - Collector (Ic) (Max):
NPN	5 A
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, Ic:
450 V	750mV @ 500mA, 2.5A
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
100μΑ	14 @ 300mA, 5V
Power - Max:	Frequency - Transition:
75 W	13MHz
Operating Temperature:	Mounting Type:
-65°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-220-3	TO-220
Base Product Number:	
MJE18004	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	Not Applicable
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

Switch-mode NPN Bipolar Power Transistor

For Switching Power Supply Applications

MJE18004, MJF18004

The MJE/MJF18004 have an applications specific state-of-the-art die designed for use in 220 V line-operated switch-mode Power supplies and electronic light ballasts.

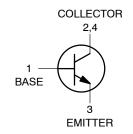
Features

- Improved Efficiency Due to Low Base Drive Requirements:
 - ♦ High and Flat DC Current Gain h_{FF}
 - ♦ Fast Switching
 - ◆ No Coil Required in Base Circuit for Turn-Off (No Current Tail)
- Full Characterization at 125°C
- ON Semiconductor Six Sigma Philosophy Provides Tight and Reproducible Parametric Distributions
- Two Package Choices: Standard TO-220 or Isolated TO-220
- $\bullet\,$ MJF18004, Case 221D, is UL Recognized at 3500 $V_{RMS}\!\!:$ File #E69369
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

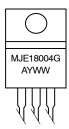
Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	V_{CEO}	450	Vdc
Collector-Base Breakdown Voltage	V _{CES}	1000	Vdc
Emitter-Base Voltage	V_{EBO}	9.0	Vdc
Collector Current - Continuous	I _C	5.0	Adc
Collector Current - Peak (Note 1)	I _{CM}	10	Adc
Base Current – Continuous	Ι _Β	2.0	Adc
Base Current – Peak (Note 1)	I _{BM}	4.0	Adc
RMS Isolation Voltage (Note 2) Test No. 1 Per Figure 22a Test No. 2 Per Figure 22b Test No. 3 Per Figure 22c (for 1 sec, R.H. < 30%, T _A = 25°C)	V _{ISOL}	MJF18004 4500 3500 1500	>
Total Device Dissipation @ T _C = 25°C MJE18004 MJF18004 Derate above 25°C MJE18004 MJF18004	P _D	75 35 0.6 0.28	W W/°C
Operating and Storage Temperature	T _J , T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

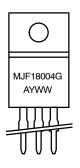

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case MJE18004 MJF18004	$R_{ heta JC}$	1.65 3.55	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1


- 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.
- 2. Proper strike and creepage distance must be provided.

POWER TRANSISTOR 5.0 AMPERES 1000 VOLTS 35 and 75 WATTS


MARKING DIAGRAMS

TO-220 FULLPACK CASE 221D STYLE 2 UL RECOGNIZED

G = Pb-Free Package
A = Assembly Location
Y = Year
WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise specified)

Characteristic			Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Collector-Emitter Sustaining Vo	Collector-Emitter Sustaining Voltage (I _C = 100 mA, L = 25 mH)			V _{CEO(sus)}	450	-	-	Vdc
Collector Cutoff Current (V _{CE} =	Rated V _{CEO} , I _B = 0	0)		I _{CEO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = (V _{CE} =	Rated V _{CES} , V _{EB} = 800 V, V _{EB} = 0)	($(T_C = 25^{\circ}C)$ $(T_C = 125^{\circ}C)$ $(T_C = 125^{\circ}C)$	I _{CES}	- - -	- - -	100 500 100	μAdc
Emitter Cutoff Current (V _{EB} = 9			,	I _{EBO}	_	_	100	μAdc
ON CHARACTERISTICS	,			250				,
Base-Emitter Saturation Voltag	e (I _C = 1.0 Adc, I _B = (I _C = 2.0 Adc, I _B =	,		V _{BE(sat)}		0.82 0.92	1.1 1.25	Vdc
Collector–Emitter Saturation Vo $ (I_C=1.0 \text{ Adc}, I_B=0.1 \text{ Adc}) $ $ (I_C=2.0 \text{ Adc}, I_B=0.4 \text{ Adc}) $ $ (I_C=2.5 \text{ Adc}, I_B=0.5 \text{ Adc}) $	ltage		(T _C = 125°C) (T _C = 125°C)	V _{CE(sat)}	- - - -	0.25 0.29 0.3 0.36 0.5	0.5 0.6 0.45 0.8 0.75	Vdc
DC Current Gain (I_C = 1.0 Adc, V_{CE} = 2.5 Vdc) (I_C = 125°C) (I_C = 0.3 Adc, V_{CE} = 5.0 Vdc) (I_C = 125°C) (I_C = 2.0 Adc, V_{CE} = 1.0 Vdc) (I_C = 10 mAdc, I_C = 5.0 Vdc)			h _{FE}	12 - 14 - 6.0 - 10	21 20 - 32 11 7.5 22	- 34 - - -	-	
DYNAMIC CHARACTERISTICS								
Current Gain Bandwidth ($I_C = 0$.5 Adc, V _{CE} = 10 V	dc, f = 1.0	MHz)	f _T	_	13	_	MHz
Output Capacitance (V _{CB} = 10	Vdc, $I_E = 0$, $f = 1.0$	MHz)		C _{ob}	_	50	65	pF
Input Capacitance (V _{EB} = 8.0 V)			C _{ib}	-	800	1000	pF
Dynamic Saturation Voltage:	(I _C = 1.0 Adc	1.0 μs	(T _C = 125°C)	V _{CE(dsat)}	- -	6.8 14	- -	Vdc
Determined 1.0 μs and 3.0 μs respectively after rising I _{B1} reaches 90% of	I _{B1} = 100 mAdc V _{CC} = 300 V)	3.0 μs	(T _C = 125°C)		- -	2.4 5.6	- -	
final I _{B1} (see Figure 18)	(I _C = 2.0 Adc	1.0 μs	(T _C = 125°C)		- -	11.3 15.5	- -	
	I _{B1} = 400 mAdc V _{CC} = 300 V)	3.0 µs	(T _C = 125°C)		- -	1.3 6.1	- -	

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise specified)

	Characteristic		Symbol	Min	Тур	Max	Unit
WITCHING CHARACT	TERISTICS: Resistive Load (D.C. ≤	10%, Pulse Width	n = 20 μs)				
Turn-On Time	$(I_C = 1.0 \text{ Adc}, I_{B1} = 0.1 \text{ Adc}, I_{B2} = 0.5 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{on}	- -	210 180	300 -	ns
Turn-Off Time		(T _C = 125°C)	t _{off}	- -	1.0 1.3	1.7 -	μs
Turn-On Time	$(I_C = 2.0 \text{ Adc}, I_{B1} = 0.4 \text{ Adc}, I_{B1} = 1.0 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{on}	- -	75 90	110 -	ns
Turn-Off Time		(T _C = 125°C)	t _{off}	- -	1.5 1.8	2.5 -	μs
Turn-On Time	$(I_C = 2.5 \text{ Adc}, I_{B1} = 0.5 \text{ Adc}, I_{B2} = 0.5 \text{ Adc}, V_{CC} = 250 \text{ V})$	(T _C = 125°C)	t _{on}	- -	450 900	800 1400	ns
Storage Time		(T _C = 125°C)	t _s	- -	2.0 2.2	3.0 3.5	μS
Fall Time		(T _C = 125°C)	t _f	- -	275 500	400 800	ns
WITCHING CHARAC	TERISTICS: Inductive Load (V _{clamp}	= 300 V, V _{CC} = 15	V, L = 200 μH))	.,		
Fall Time	(I _C = 1.0 Adc, I _{B1} = 0.1 Adc, I _{B2} = 0.5 Adc)	(T _C = 125°C)	t _{fi}	- -	100 100	150 -	ns
Storage Time		(T _C = 125°C)	t _{si}	- -	1.1 1.4	1.7 -	μS
Crossover Time		(T _C = 125°C)	t _c	- -	180 160	250 -	ns
Fall Time	$(I_C = 2.0 \text{ Adc}, I_{B1} = 0.4 \text{ Adc}, I_{B2} = 1.0 \text{ Adc})$	(T _C = 125°C)	t _{fi}	- -	90 150	175 -	ns
Storage Time		(T _C = 125°C)	t _{si}	_ _	1.7 2.2	2.5 -	μS
Crossover Time		(T _C = 125°C)	t _c	_ _	180 250	300 -	ns
Fall Time	(I _C = 2.5 Adc, I _{B1} = 0.5 Adc, I _{B2} = 0.5 Adc,	(T _C = 125°C)	t _{fi}	- -	70 100	130 175	ns
Storage Time	V _{BE(off)} = -5.0 Vdc)	(T _C = 125°C)	t _{si}	- -	0.75 1.0	1.0 1.3	μs
Crossover Time		(T _C = 125°C)	t _c	_ _	250 250	350 500	ns

TYPICAL STATIC CHARACTERISTICS

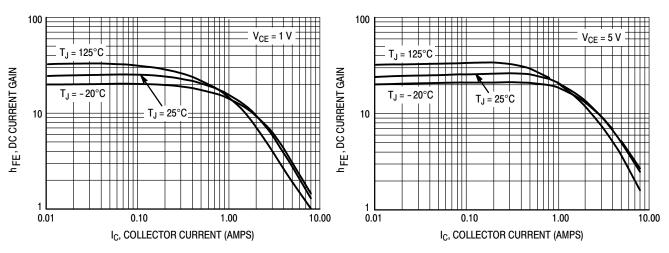


Figure 1. DC Current Gain @ 1 Volt

Figure 2. DC Current Gain @ 5 Volts

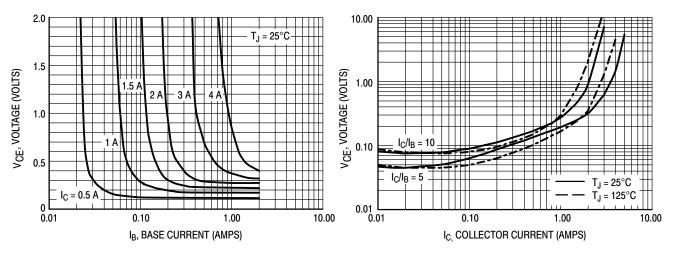


Figure 3. Collector Saturation Region

Figure 4. Collector-Emitter Saturation Voltage

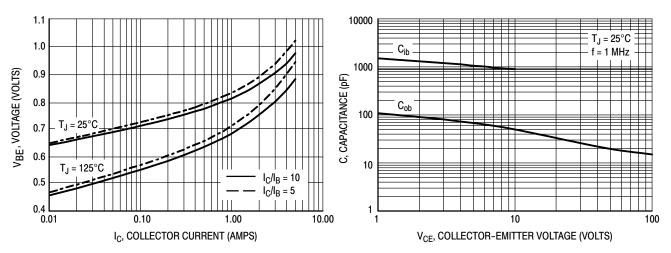


Figure 5. Base-Emitter Saturation Region

Figure 6. Capacitance

TYPICAL SWITCHING CHARACTERISTICS $(I_{B2} = I_C/2 \text{ for all switching})$

Figure 7. Resistive Switching, ton

Figure 8. Resistive Switching, toff

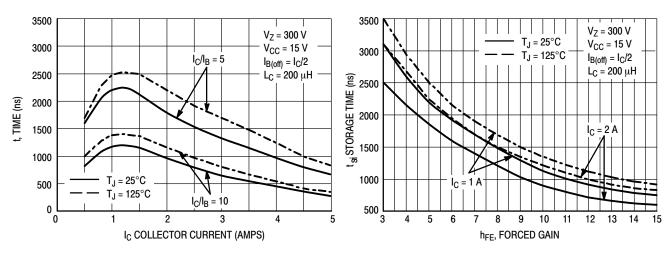


Figure 9. Inductive Storage Time, tsi

Figure 10. Inductive Storage Time, t_{si}(h_{FE})

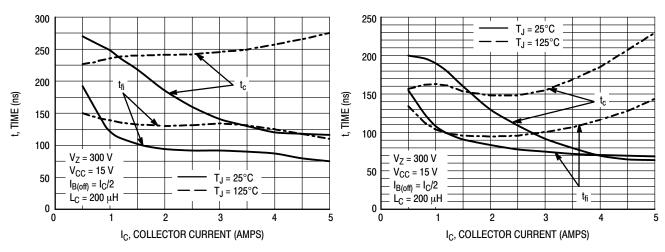
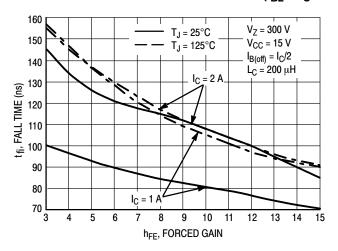



Figure 11. Inductive Switching, t_c and t_{fi} , $I_C/I_B = 5$

Figure 12. Inductive Switching, t_c and t_{fi} , $I_C/I_B = 10$

TYPICAL SWITCHING CHARACTERISTICS $(I_{B2} = I_C/2 \text{ for all switching})$

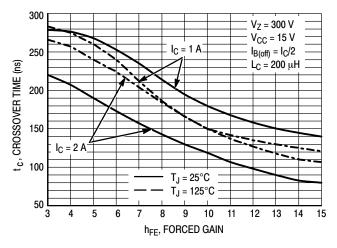
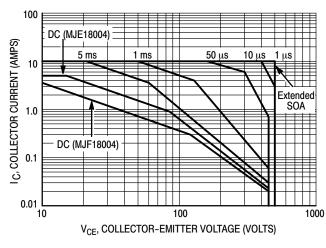



Figure 13. Inductive Fall Time

Figure 14. Inductive Crossover Time

GUARANTEED SAFE OPERATING AREA INFORMATION

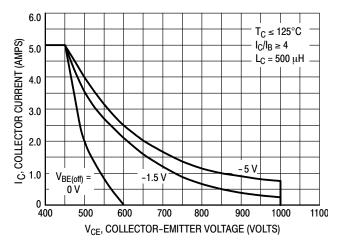


Figure 15. Forward Bias Safe Operating Area

Figure 16. Reverse Bias Safe Operating Area

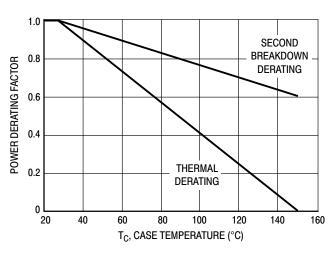


Figure 17. Forward Bias Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on $T_C = 25^{\circ}C$; $T_J(pk)$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25$ °C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. T_J(pk) may be calculated from the data in Figures 20 and 21. At any case temperatures, thermal limitations will reduce the power that can be handled to values less the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction reverse biased. The safe level is specified as a reverse-biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

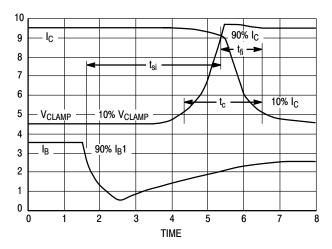
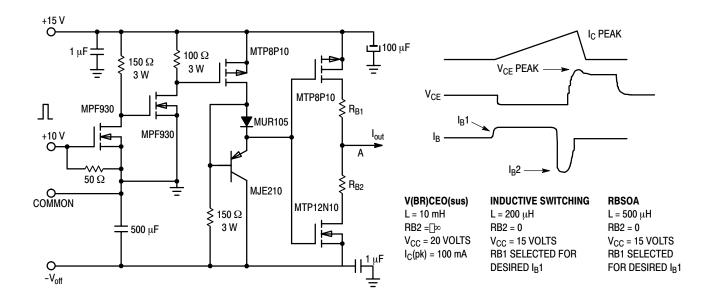



Figure 18. Dynamic Saturation Voltage Measurements

Figure 19. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit

TYPICAL THERMAL RESPONSE

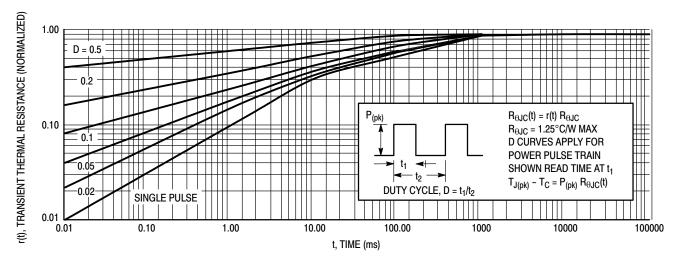


Figure 20. Typical Thermal Response ($Z_{\theta JC(t)}$) for MJE18004

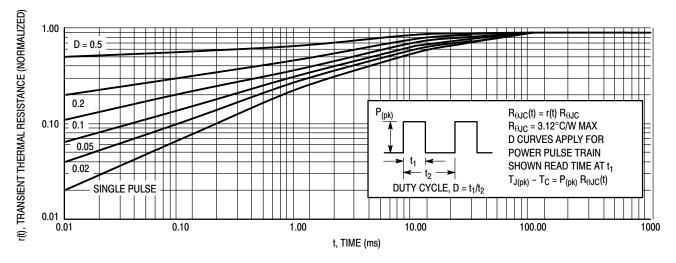
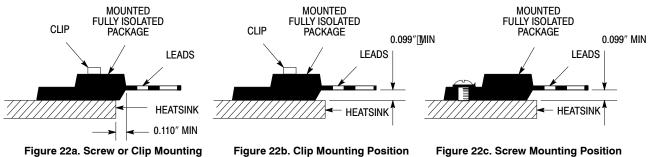



Figure 21. Typical Thermal Response for MJF18004

ORDERING INFORMATION

Device	Package	Shipping
MJE18004G	TO-220AB (Pb-Free)	50 Units / Rail
MJF18004G	TO-220 (Fullpack) (Pb-Free)	50 Units / Rail

TEST CONDITIONS FOR ISOLATION TESTS*

*Measurement made between leads and heatsink with all leads shorted together

Position for Isolation Test Number 1

for Isolation Test Number 3

MOUNTING INFORMATION**

for Isolation Test Number 2

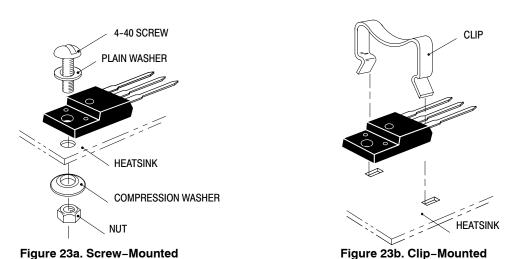


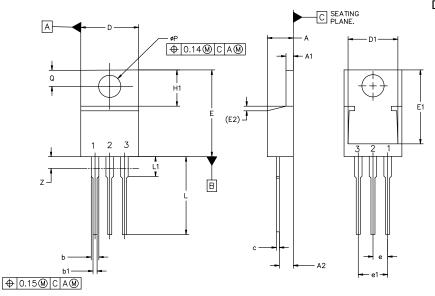
Figure 23. Typical Mounting Techniques for Isolated Package

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in · lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in · lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in · lbs of mounting torque under any mounting conditions.

^{**}For more information about mounting power semiconductors see Application Note AN1040.


MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

TO-220-3 10.10x15.12x4.45, 2.54P CASE 221A **ISSUE AL**

DATE 05 FEB 2025

MILLIMETERS					
DIM	MIN	NOM	MAX		
Α	4.07	4.45	4.83		
A1	1.15	1.28	1.41		
A2	2.04	2.42	2.79		
Ф	1.15	1.34	1.52		
b1	0.64	0.80	0.96		
O	0.36	0.49	0.61		
D	9.66	10.10	10.53		
D1	8.43	8.63	8.83		
E	14.48	15.12	15.75		
E1	12.58	12.78	12.98		
E2	1.27 REF				

MILLIMETERS					
DIM	MIN	NOM	MAX		
е	2.42	2.54	2.66		
e1	4.83	5.08	5.33		
H1	5.97	6.22	6.47		
L	12.70	13.49	14.27		
L1	2.80	3.45	4.10		
Q	2.54	2.79	3.04		
ØΡ	3.60	3.85	4.09		
Z			3.48		

NOTES:

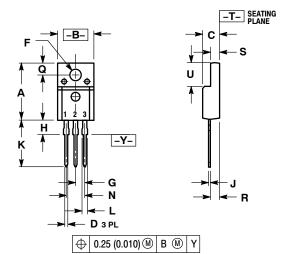
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	EMITTER	2.	ANODE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	COLLECTOR	3.	GATE	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE	4.	MAIN TERMINAL 2
STYLE 5:		STYLE 6:		STYLE 7:		STYLE 8:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE	3.	EXTERNAL TRIP/DELAY
4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11:		STYLE 12	:
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	SOURCE	2.	SOURCE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	DRAIN	3.	GATE	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE	4.	NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220-3 10.10x15.12x4.4	TO-220-3 10.10x15.12x4.45, 2.54P	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi nakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

TO-220 FULLPAK CASE 221D-03

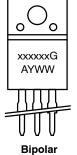
ISSUE K

DATE 27 FEB 2009

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH
- 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.617	0.635	15.67	16.12
В	0.392	0.419	9.96	10.63
C	0.177	0.193	4.50	4.90
D	0.024	0.039	0.60	1.00
F	0.116	0.129	2.95	3.28
G	0.100	BSC	2.54	BSC
Н	0.118	0.135	3.00	3.43
J	0.018	0.025	0.45	0.63
K	0.503	0.541	12.78	13.73
L	0.048	0.058	1.23	1.47
N	0.200	BSC	5.08	BSC
Q	0.122	0.138	3.10	3.50
R	0.099	0.117	2.51	2.96
S	0.092	0.113	2.34	2.87
U	0.239	0.271	6.06	6.88

MARKING DIAGRAMS


STYLE 1: PIN 1. GATE 2. DRAIN 3. SOURCE STYLE 2: PIN 1. BASE 2. COLLECTOR 3. EMITTER

STYLE 3: PIN 1. ANODE CATHODE
 ANODE STYLE 5: PIN 1. CATHODE

STYLE 4: PIN 1. CATHODE ANODE 3. CATHODE

2. ANODE 3. GATE

STYLE 6: PIN 1. MT 1 2. MT 2 3. GATE

xxxxxx = Specific Device Code G = Pb-Free Package Α = Assembly Location Υ = Year

= Work Week

AYWW xxxxxxG **AKA** Rectifier = Assembly Location

AKA

Υ = Year WW = Work Week XXXXXX = Device Code G = Pb-Free Package

= Polarity Designator

0

DOCUMENT NUMBER:	98ASB42514B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220 FULLPAK		PAGE 1 OF 1

WW

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com