MJF127G Datasheet https://www.DiGi-Electronics.com DiGi Electronics Part Number MJF127G-DG Manufacturer onsemi Manufacturer Product Number MJF127G Description TRANS PNP DARL 100V 5A TO220FP Detailed Description Bipolar (BJT) Transistor PNP - Darlington 100 V 5 A 2 W Through Hole TO-220FP Tel: +00 852-30501935 RFQ Email: Info@DiGi-Electronics.com DiGi is a global authorized distributor of electronic components. # **Purchase and inquiry** | Manufacturer Product Number: | Manufacturer: | |--|--| | MJF127G | onsemi | | Series: | Product Status: | | | Active | | Transistor Type: | Current - Collector (Ic) (Max): | | PNP - Darlington | 5 A | | Voltage - Collector Emitter Breakdown (Max): | Vce Saturation (Max) @ lb, Ic: | | 100 V | 3.5V @ 20mA, 5A | | Current - Collector Cutoff (Max): | DC Current Gain (hFE) (Min) @ lc, Vce: | | 10μΑ | 2000 @ 3A, 3V | | Power - Max: | Frequency - Transition: | | 2 W | | | Operating Temperature: | Mounting Type: | | -65°C ~ 150°C (TJ) | Through Hole | | Package / Case: | Supplier Device Package: | | TO-220-3 Full Pack | TO-220FP | | Base Product Number: | | | MJF127 | | # **Environmental & Export classification** 8541.29.0095 | RoHS Status: | Moisture Sensitivity Level (MSL): | |------------------|-----------------------------------| | ROHS3 Compliant | Not Applicable | | REACH Status: | ECCN: | | REACH Unaffected | EAR99 | | HTSUS: | | # Complementary Power Darlingtons ## For Isolated Package Applications # **MJF122, MJF127** Designed for general-purpose amplifiers and switching applications, where the mounting surface of the device is required to be electrically isolated from the heatsink or chassis. #### **Features** - Electrically Similar to the Popular TIP122 and TIP127 - 100 V_{CEO(sus)} - 5.0 A Rated Collector Current - No Isolating Washers Required - Reduced System Cost - High DC Current Gain 2000 (Min) @ $I_C = 3$ Adc - UL Recognized, File #E69369, to 3500 V_{RMS} Isolation - Pb-Free Packages are Available* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|----------------|----------------| | Collector-Emitter Voltage | V_{CEO} | 100 | Vdc | | Collector-Base Voltage | V _{CB} | 100 | Vdc | | Emitter-Base Voltage | V_{EB} | 5 | Vdc | | RMS Isolation Voltage (Note 1)
(t = 0.3 sec, R.H. ≤ 30%, T _A = 25°C)
Per Figure 14 | V _{ISOL} | 4500 | V_{RMS} | | Collector Current – Continuous
Peak | Ic | 5 8 | Adc | | Base Current | Ι _Β | 0.12 | Adc | | Total Power Dissipation (Note 2)
@ T _C = 25°C
Derate above 25°C | P _D | 30
0.24 | W
W/°C | | Total Power Dissipation @ T _A = 25°C
Derate above 25°C | P _D | 2
0.016 | W
W/°C | | Operating and Storage Junction Temperature Range | T _J , T _{stg} | -65 to
+150 | I _C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 62.5 | °C/W | | Thermal Resistance, Junction-to-Case (Note 2) | $R_{\theta JC}$ | 4.1 | °C/W | | Lead Temperature for Soldering Purpose | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Proper strike and creepage distance must be provided. - Measurement made with thermocouple contacting the bottom insulated mounting surface (in a location beneath the die), the device mounted on a heatsink with thermal grease and a mounting torque of ≥ 6 in. lbs. 1 ### COMPLEMENTARY SILICON POWER DARLINGTONS 5.0 A, 100 V, 30 W #### MARKING DIAGRAM TO-220 CASE 221D-02 STYLE 2 = 2 or 7 G = Pb-Free Package A = Assembly Location Y = Year WW = Work Week #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------|---------------------|-----------------------| | MJF122 | TO-220 | 50 Units / Rail | | MJF122G | TO-220
(Pb-Free) | 50 Units / Rail | | MJF127 | TO-220 | 50 Units / Rail | | MJF127G | TO-220
(Pb-Free) | 50 Units / Rail | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |--|--------|-----------------------|--------------|------------|------| | OFF CHARACTERISTICS | | • | • | • | • | | Collector–Emitter Sustaining Voltage (Note 3) $(I_C = 100 \text{ mAdc}, I_B = 0)$ | | V _{CEO(sus)} | 100 | _ | Vdc | | Collector Cutoff Current (V _{CE} = 50 Vdc, I _B = 0) | | I _{CEO} | - | 10 | μAdc | | Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0) | | I _{CBO} | - | 10 | μAdc | | Emitter Cutoff Current (V _{BE} = 5 Vdc, I _C = 0) | | I _{EBO} | _ | 2 | mAdc | | ON CHARACTERISTICS (Note 3) | | | | | | | DC Current Gain (I_C = 0.5 Adc, V_{CE} = 3 Vdc) (I_C = 3 Adc, V_{CE} = 3 Vdc) | | h _{FE} | 1000
2000 | _
_ | - | | Collector–Emitter Saturation Voltage ($I_C = 3$ Adc, $I_B = 12$ mAdc) ($I_C = 5$ Adc, $I_B = 20$ mAdc) | | V _{CE(sat)} | -
- | 2
3.5 | Vdc | | Base-Emitter On Voltage (I _C = 3 Adc, V _{CE} = 3 Vdc) | | V _{BE(on)} | _ | 2.5 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | | Small-Signal Current Gain ($I_C = 3$ Adc, $V_{CE} = 4$ Vdc, $f = 1$ MHz) | | h _{fe} | 4 | - | - | | Output Capacitance MJF127
(V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz) | MJF122 | C _{ob} | -
- | 300
200 | pF | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2\%$. Figure 1. Switching Times Test Circuit Figure 2. Typical Switching Times Figure 3. Maximum Power Derating Figure 4. Thermal Response Figure 5. Maximum Forward Bias Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ} C$; T_C is variable depending on conditions. Secondary breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ} C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown. 300 200 200 T_J = 25°C Figure 6. Typical Small-Signal Current Gain Figure 7. Typical Capacitance $V_{CE} = 4 V$ 5 7 10 Figure 8. Typical DC Current Gain Figure 9. Typical Collector Saturation Region Figure 10. Typical "On" Voltages Figure 11. Typical Temperature Coefficients Figure 12. Typical Collector Cut-Off Region Figure 13. Darlington Schematic #### **TEST CONDITIONS FOR ISOLATION TESTS*** FULLY ISOLATED PACKAGE Figure 14. Mounting Position #### **MOUNTING INFORMATION** Figure 15. Typical Mounting Techniques* Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in \cdot lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions. Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in · lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability. Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in · lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, **onsemi** does not recommend exceeding 10 in · lbs of mounting torque under any mounting conditions. ^{*}Measurement made between leads and heatsink with all leads shorted together. ^{**}For more information about mounting power semiconductors see Application Note AN1040. # **MECHANICAL CASE OUTLINE** #### PACKAGE DIMENSIONS #### TO-220 FULLPAK CASE 221D-03 ISSUE K **DATE 27 FEB 2009** SCALE 1:1 - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH - 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03. | | INCHES | | MILLIN | IETERS | |-----|--------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.617 | 0.635 | 15.67 | 16.12 | | В | 0.392 | 0.419 | 9.96 | 10.63 | | С | 0.177 | 0.193 | 4.50 | 4.90 | | D | 0.024 | 0.039 | 0.60 | 1.00 | | F | 0.116 | 0.129 | 2.95 | 3.28 | | G | 0.100 | BSC | 2.54 BSC | | | Н | 0.118 | 0.135 | 3.00 | 3.43 | | J | 0.018 | 0.025 | 0.45 | 0.63 | | K | 0.503 | 0.541 | 12.78 | 13.73 | | L | 0.048 | 0.058 | 1.23 | 1.47 | | N | 0.200 | BSC | 5.08 | BSC | | Q | 0.122 | 0.138 | 3.10 | 3.50 | | R | 0.099 | 0.117 | 2.51 | 2.96 | | S | 0.092 | 0.113 | 2.34 | 2.87 | | U | 0.239 | 0.271 | 6.06 | 6.88 | #### **MARKING DIAGRAMS** STYLE 1: PIN 1. GATE 2. DRAIN 3. SOURCE STYLE 4: PIN 1. CATHODE 3. CATHODE ANODE STYLE 2: PIN 1. BASE 2. COLLECTOR 3. EMITTER STYLE 6: PIN 1. MT 1 2. MT 2 3. GATE STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE STYLE 3: PIN 1. ANODE CATHODE ANODE = Assembly Location xxxxxx = Specific Device Code = Pb-Free Package Υ = Year = Assembly Location WW = Work Week = Year XXXXXX = Device Code = Work Week G = Pb-Free Package WW AKA = Polarity Designator | DOCUMENT NUMBER: | 98ASB42514B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|----------------|--|-------------| | DESCRIPTION: | TO-220 FULLPAK | | PAGE 1 OF 1 | G Α Υ onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales ### **OUR CERTIFICATE** DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com Tel: +00 852-30501935 RFQ Email: Info@DiGi-Electronics.com