

MJW18020G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MJW18020G-DG

Manufacturer onsemi

Manufacturer Product Number MJW18020G

Description TRANS NPN 450V 30A TO247-3

Detailed Description Bipolar (BJT) Transistor NPN 450 V 30 A 13MHz 250

W Through Hole TO-247-3

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MJW18020G	onsemi
Series:	Product Status:
	Active
Transistor Type:	Current - Collector (Ic) (Max):
NPN	30 A
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, Ic:
450 V	1.5V @ 4A, 20A
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ lc, Vce:
100μΑ	14 @ 3A, 5V
Power - Max:	Frequency - Transition:
250 W	13MHz
Operating Temperature:	Mounting Type:
-65°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-247-3	TO-247-3
Base Product Number:	
MJW18020	

Environmental & Export classification

8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	Not Applicable
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

NPN Silicon Power Transistors High Voltage Planar

MJW18020

The MJW18020 planar High Voltage Power Transistor is specifically Designed for motor control applications, high power supplies and UPS's for which the high reproducibility of DC and Switching parameters minimizes the dead time in bridge configurations.

Features

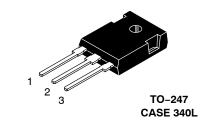
- High and Excellent Gain Linearity
- Fast and Very Tight Switching Times Parameters tsi and tfi
- Very Stable Leakage Current due to the Planar Structure
- High Reliability
- Pb-Free Package is Available*

MAXIMUM RATINGS

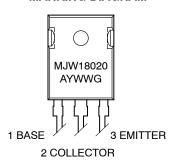
Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	V _{CEO}	450	Vdc
Collector-Emitter Breakdown Voltage	V _{CES}	1000	Vdc
Collector-Base Voltage	V _{CBO}	1000	Vdc
Emitter-Base Voltage	V _{EBO}	9.0	Vdc
Collector Current - Continuous - Peak (Note 1)	IC	30 45	Adc
Base Current - Continuous - Peak (Note 1)	I _B	6.0 10	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	250 2.0	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	50	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	275	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.


*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

1

30 AMPERES 1000 VOLTS BV_{CES} 450 VOLTS BV_{CEO,} 250 WATTS

MARKING DIAGRAM

Assembly Location

Y = Year WW = Work Week

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
MJW18020	TO-247	30 Units/Rail
MJW18020G	TO-247 (Pb-Free)	30 Units/Rail

MJW18020

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characte	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	450	_	-	Vdc	
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , I _B = 0)	I _{CEO}	-	_	100	μAdc	
Collector Cutoff Current (V _{CE} = Rated V _C (T _C = 125°C)	_{ES} , V _{EB} = 0)	I _{CES}	-	-	100 500	μAdc
Emitter Cutoff Current (V _{CE} = 9 Vdc, I _C = 0)		I _{EBO}	-	_	100	μAdc
ON CHARACTERISTICS					•	
DC Current Gain (I _C = 3 Adc, V _{CE} = 5	Vdc) (T _C = 125°C)	h _{FE}	14	30	34 -	
$(I_C = 10 \text{ Adc } V_{CE} = 2)$	Vdc)		8	16 14		
$(I_C = 20 \text{ Adc } V_{CE} = 2)$			5 5.5	9	_	
$(I_C = 10 \text{ mAdc V}_{CE} =$	$(T_C = 125^{\circ}C)$ 5 Vdc)		4 14	7 25	-	
Base–Emitter Saturation Voltage ($I_C = 10$) ($I_C = 20$)) Adc, I _B = 2 Adc)) Adc, I _B = 4 Adc)	V _{BE(sat)}	-	0.97 1.15	1.25 1.5	Vdc
Collector-Emitter Saturation Voltage	V _{CE(sat)}				Vdc	
$(I_C = 10 \text{ Adc}, I_B = 2 \text{ Adc})$		_	0.2 0.3	0.6		
$(I_C = 20 \text{ Adc}, I_B = 4 \text{ Adc})$		-	0.5	1.5		
DVALANIO QUADA OTERIOTICO	(T _C = 125°C)		_	0.9	2.0	
DYNAMIC CHARACTERISTICS Current Gain Bandwidth Product		f.	1	13	1	MHz
$(I_C = 1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MI})$	f _T	_	13	_	IVITIZ	
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f_{test} = 1 \text{ MHz})$	C _{ob}	-	300	500	pF	
Input Capacitance (V _{EB} = 8.0)	C _{ib}	_	7000	9000	pF	
SWITCHING CHARACTERISTICS: Resi	stive Load (D.C. = 10%, Pulse Width	= 70 μs)	II.	l	I.	
Turn-On Time	$(I_C = 10 \text{ Adc}, I_{B1} = I_{B2} = 2 \text{ Adc},$	t _{On}	_	540	750	ns
Storage Time	Vcc = 125 V)	t _s	_	4.75	6	μs
Fall Time		t _f	_	380	500	ns
Turn-Off Time		t _{Off}	_	5.2	6.5	μs
Turn-On Time	$(I_C = 20 \text{ Adc}, I_{B1} = I_{B2} = 4 \text{ Adc},$	t _{On}	_	965	1200	ns
Storage Time	Vcc = 125 V)	t _s	_	2.9	3.5	μs
Fall Time		t _f	_	350	500	ns
Turn-Off Time			-	3.25	4	μs
SWITCHING CHARACTERISTICS: Indu	ctive Load (V _{clamp} = 300 V , Vcc = 15	5 V, L = 200 μH)				
Fall Time	$(I_C = 10 \text{ Adc}, I_{B1} = I_{B2} = 2 \text{ Adc})$	t _{fi}	-	142	250	ns
Storage Time		t _{si}	-	4.75	6	μs
_	t _C	-	320	500	ns	
Crossover Time				1	.	
Crossover Time Fall Time	(I _C = 20 Adc, I _{B1} = I _{B2} = 4 Adc)	t _{fi}	-	350	500	ns
	(I _C = 20 Adc, I _{B1} = I _{B2} = 4 Adc)	t _{fi}	-	350 3.0	500 3.5	ns µs

MJW18020

TYPICAL CHARACTERISTICS

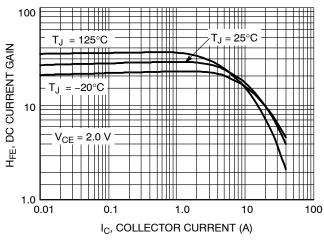


Figure 1. DC Current Gain, V_{CE} = 2.0 V

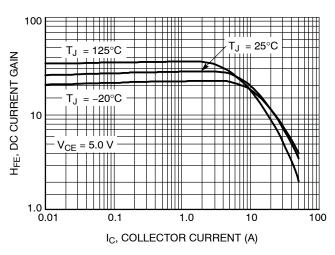


Figure 2. DC Current Gain, V_{CE} = 5.0 V

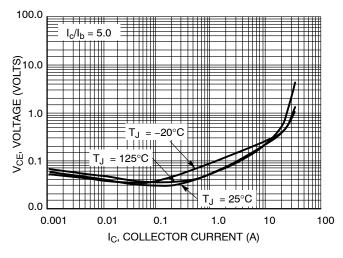


Figure 3. Typical Collector–Emitter Saturation Voltage, $I_C/I_B = 5.0$

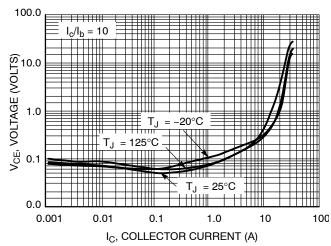


Figure 4. Typical Collector–Emitter Saturation Voltage, $I_C/I_B = 10$

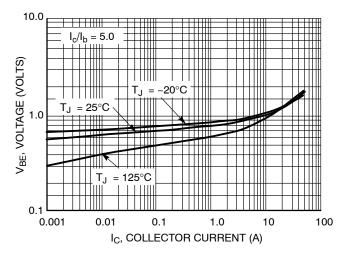


Figure 5. Typical Base–Emitter Saturation Voltage, $I_C/I_B = 5.0$

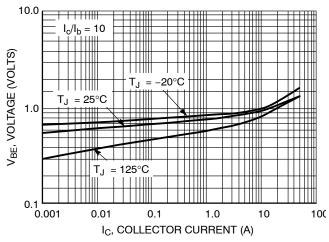


Figure 6. Typical Base–Emitter Saturation Voltage, I_C/I_B = 10

MJW18020

TYPICAL CHARACTERISTICS

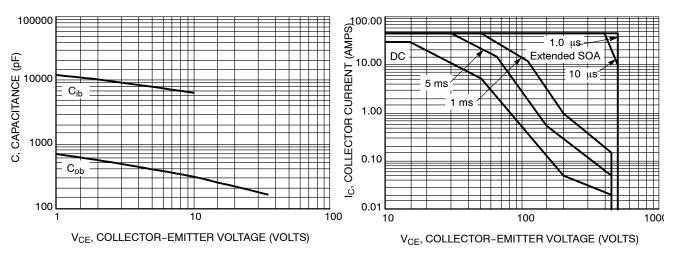


Figure 7. Typical Capacitance

Figure 8. Forward Bias Safe Operating Area

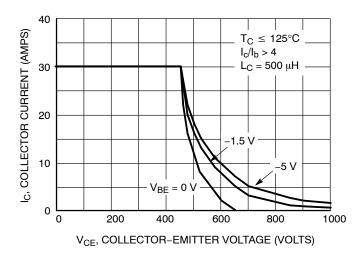
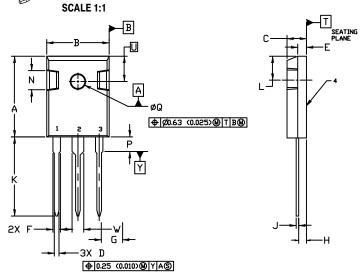


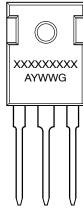

Figure 9. Reverse Bias Safe Operating Area

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS


TO-247 CASE 340L ISSUE G

DATE 06 OCT 2021


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	HES	
DIM	MIN.	MAX.	MIN.	MAX.	
Α	20.32	21.08	0.800	0.830	
В	15.75	16.26	0.620	0.640	
С	4.70	5.30	0.185	0.209	
D	1.00	1.40	0.040	0.055	
Ε	1.90	2.60	0.075	0.102	
F	1.65	2.13	0.065	0.084	
G	5.45	5.45 BSC		0.215 BSC	
Н	1.50	2.49	0.059	0.098	
J	0.40	0.80	0.016	0.031	
К	19.81	20.83	0.780	0.820	
L	5.40	6.20	0.212	0.244	
N	4.32	5.49	0.170	0.216	
Р		4.50		0.177	
Q	3.55	3.65	0.140	0.144	
U	6.15 BSC		0.242	BSC	
W	2.87	3.12	0.113	0.123	

GENERIC MARKING DIAGRAM*

STYLE 1: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

> PIN 1. CATHODE 2. ANODE

3. GATE 4. ANODE

STYLE 5:

STYLE 2:
PIN 1. ANODE
2. CATHODE (S)
3. ANODE 2
4. CATHODES (S)

PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2

3. GATE 4. MAIN TERMINAL 2

STYLE 6:

STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 4:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

XXXXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB15080C	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com