

MPS2907AG Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	MPS2907AG-DG
Manufacturer	onsemi
Manufacturer Product Number	MPS2907AG
Description	TRANS PNP 60V 0.6A TO92
Detailed Description	Bipolar (BJT) Transistor PNP 60 V 600 mA 200MHz 6 25 mW Through Hole TO-92 (TO-226)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MPS2907AG	onsemi
Series:	Product Status:
	Obsolete
Transistor Type:	Current - Collector (Ic) (Max):
PNP	600 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
60 V	1.6V @ 50mA, 500mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
10nA (ICBO)	100 @ 150mA, 10V
Power - Max:	Frequency - Transition:
625 mW	200MHz
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-226-3, TO-92-3 Long Body	то-92 (то-226)
Base Product Number:	
MPS290	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8541.21.0075

General Purpose Transistors

PNP Silicon

MAXIMUM RATINGS

Collector - Emitter Voltage

Collector Current - Continuous

Total Device Dissipation @ T_A = 25°C

Total Device Dissipation @ T_C = 25°C

Collector - Base Voltage

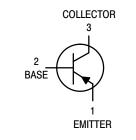
Emitter-Base Voltage

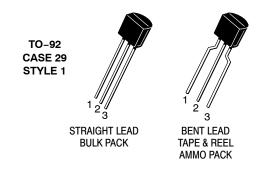
Derate above 25°C

Derate above 25°C

Temperature Range

Features


• These are Pb-Free Devices*


Rating

ON Semiconductor®

http://onsemi.com

THERMAL CHARACTERISTICS

Operating and Storage Junction

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

Symbol

VCEO

V_{CBO}

V_{EBO}

 I_{C}

 P_D

 P_D

T_J, T_{sta}

Value

-60

-60

-5.0

-600

625

5.0

1.5

12

-55 to +150

Unit

Vdc

Vdc

Vdc

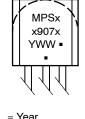
mAdc

mW

mW/°C

w

mW/°C


°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

DEVICE MARKING

Device	Line 1	Line 2
MPS2907AG	MPS	2907A
MPS2907ARLG	MPS2	907A
MPS2907ARLRAG	MPS	2907
MPS2907ARLRPG	MPS	2907

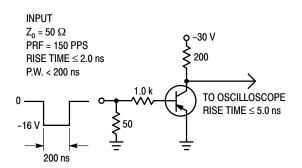
MARKING DIAGRAM

Y = Year WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Ch	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS			L		•
Collector - Emitter Breakdown Voltage	(Note 1) (I _C = -10 mAdc, I _B = 0)	V _{(BR)CEO}	-60	-	Vdc
Collector-Base Breakdown Voltage (Ic	_C = -10 μAdc, I _E = 0)	V _{(BR)CBO}	-60	-	Vdc
Emitter-Base Breakdown Voltage (I _E =	= –10 μAdc, I _C = 0)	V _{(BR)EBO}	-5.0	-	Vdc
Collector Cutoff Current ($V_{CE} = -30$ Vd	lc, V _{EB(off)} = −0.5 Vdc)	I _{CEX}	-	-50	nAdc
$ Collector Cutoff Current \\ (V_{CB} = -50 \text{ Vdc}, \text{ I}_{\text{E}} = 0) \\ (V_{CB} = -50 \text{ Vdc}, \text{ I}_{\text{E}} = 0, \text{ T}_{\text{A}} = 150^{\circ}\text{C}) $)	I _{CBO}		-0.01 -10	μAdc
Base Current (V _{CE} = -30 Vdc, V _{EB(off)}	= -0.5 Vdc)	IB	-	-50	nAdc
ON CHARACTERISTICS				•	*
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = -0.1 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}) \\ (I_{C} = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}) \\ (I_{C} = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}) \\ (I_{C} = -150 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}) \\ (I_{C} = -500 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}) (\text{Note 1}) \\ (I_{C} = -500 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}) (\text{Note 1}) \end{array} $		h _{FE}	75 100 100 100 50	- - 300 -	_
Collector – Emitter Saturation Voltage (Note 1) ($I_C = -150$ mAdc, $I_B = -15$ mAdc) ($I_C = -500$ mAdc, $I_B = -50$ mAdc)		V _{CE(sat)}		-0.4 -1.6	Vdc
Base – Emitter Saturation Voltage (Note 1) (I _C = –150 mAdc, I _B = –15 mAdc) (I _C = –500 mAdc, I _B = –50 mAdc)		V _{BE(sat)}		-1.3 -2.6	Vdc
SMALL-SIGNAL CHARACTERISTICS	S	I	1		
Current-Gain – Bandwidth Product (N $(I_C$ = –50 mAdc, V _{CE} = –20 Vdc, f =		f _T	200	-	MHz
Output Capacitance ($V_{CB} = -10$ Vdc, I_E	= 0, f = 1.0 MHz)	C _{obo}	-	8.0	pF
Input Capacitance (V _{EB} = -2.0 Vdc, I _C	= 0, f = 1.0 MHz)	C _{ibo}	-	30	pF
SWITCHING CHARACTERISTICS		·			
Turn-On Time	$(V_{CC} = -30 \text{ Vdc}, I_{C} = -150 \text{ mAdc},$	t _{on}	-	45	ns
Delay Time	I _{B1} = -15 mAdc) (Figures 1 and 5)	t _d	-	10	ns
Rise Time]	t _r	-	40	ns
Turn-Off Time	$V_{CC} = -6.0 \text{ Vdc}, I_C = -150 \text{ mAdc},$		-	100	ns
Storage Time	I _{B1} = I _{B2} = 15 mAdc) (Figure 2)	t _s	-	80	ns
Fall Time]	t _f	-	30	ns

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. 2. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

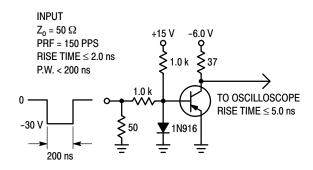
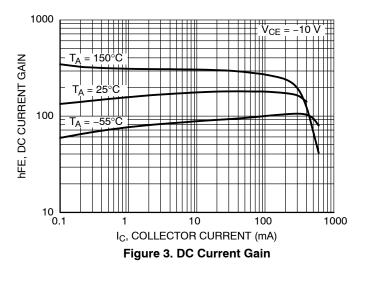
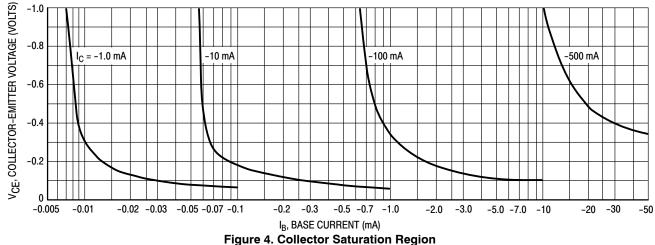
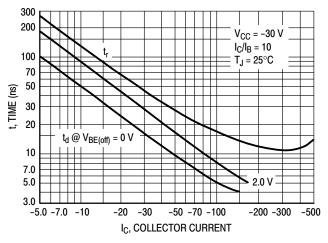
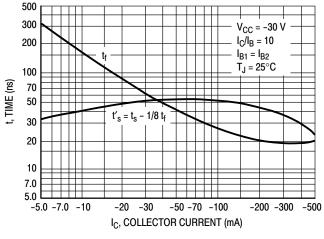
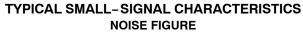




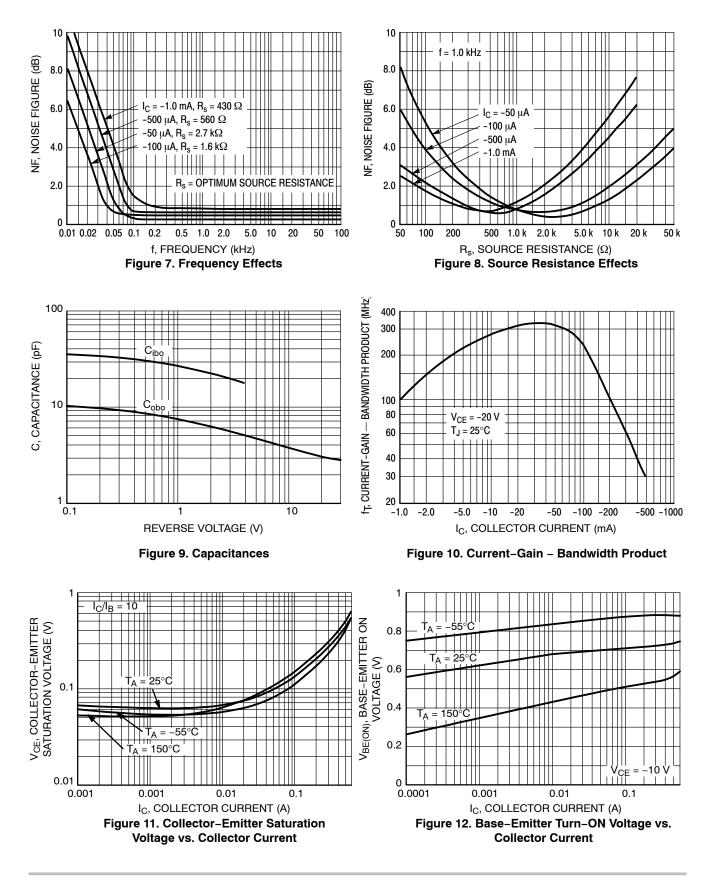
Figure 2. Storage and Fall Time Test Circuit

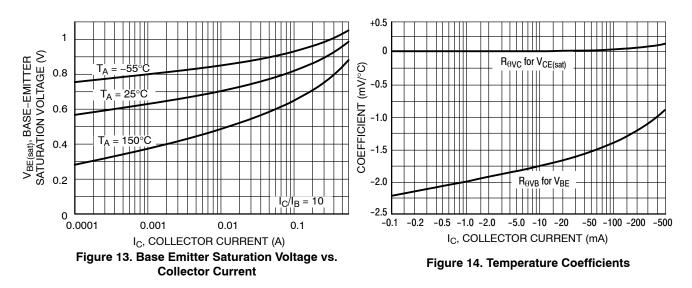

TYPICAL CHARACTERISTICS


ORDERING INFORMATION

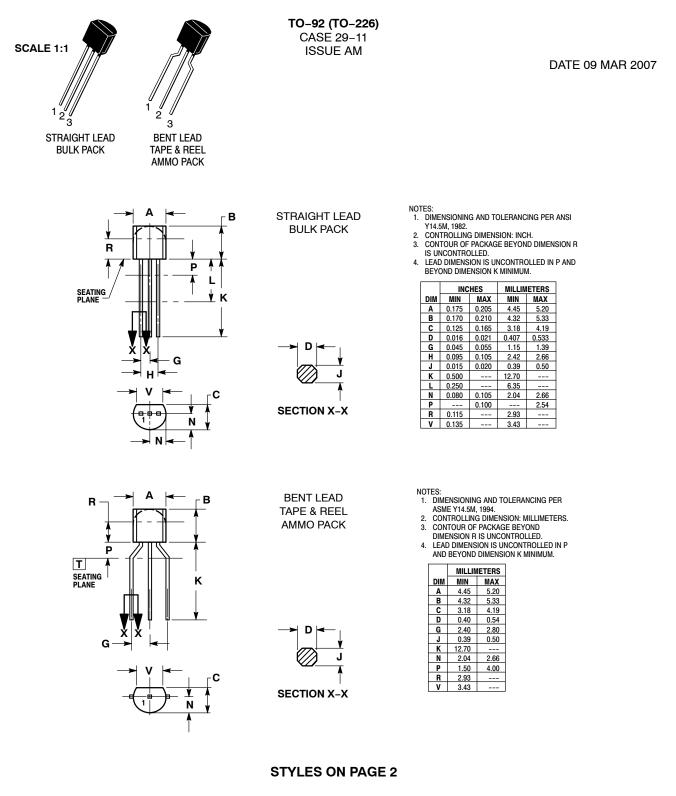
Device	Package	Shipping [†]
MPS2907AG	TO-92 (Pb-Free)	5000 Units / Bulk
MPS2907ARLG	TO-92 (Pb-Free)	2000 / Tono & Dool
MPS2907ARLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
MPS2907ARLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.





 V_{CE} = 10 Vdc, T_A = 25°C



Onsemi

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly fron Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

TO-92 (TO-226) CASE 29-11 ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
2.	GATE SOURCE & SUBSTRATE DRAIN	2.	DRAIN	2.	DRAIN GATE SOURCE & SUBSTRATE	2.	EMITTER	2.	GATE
2. 3.	CATHODE	2. 3.	GATE MAIN TERMINAL 2	2. 3.	GATE CATHODE 2	2. 3.	COLLECTOR BASE	2. 3.	CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER BASE	PIN 1. 2.	SOURCE	PIN 1.	GATE SOURCE DRAIN	PIN 1.	emitter Collector/Anode Cathode	PIN 1.	MT 1
PIN 1. 2.	V _{CC} GROUND 2 OUTPUT	PIN 1. 2.	MT SUBSTRATE	PIN 1. 2.	CATHODE	PIN 1. 2.	NOT CONNECTED	PIN 1. 2.	DRAIN GATE
	GATE DRAIN SOURCE	STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN INPUT OUTPUT	STYLE 34: PIN 1. 2. 3.	INPUT Ground Logic	STYLE 35: PIN 1. 2. 3.	GATE COLLECTOR EMITTER

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"		
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specification by customer's technical experts. onsemi does not cun yer any or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exesonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that o

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/suport/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>	<section-header><section-header></section-header></section-header>	
Image: State	Here and the second sec	Hand and a set of the	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.