

MPSW63RLRA Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number

MPSW63RLRA-DG

Manufacturer

onsemi

Manufacturer Product Number

MPSW63RLRA

Description

TRANS PNP DARL 30V 0.5A TO92

Detailed Description

Bipolar (BJT) Transistor PNP - Darlington 30 V 500 m A 125MHz 1 W Through Hole TO-92 (TO-226)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MPSW63RLRA	onsemi
Series:	Product Status:
	Obsolete
Transistor Type:	Current - Collector (Ic) (Max):
PNP - Darlington	500 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, Ic:
30 V	1.5V @ 100μA, 100mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ lc, Vce:
100nA (ICBO)	10000 @ 100mA, 5V
Power - Max:	Frequency - Transition:
1 W	125MHz
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-226-3, TO-92-3 Long Body (Formed Leads)	TO-92 (TO-226)
Base Product Number:	
MPSW63	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0075	

ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

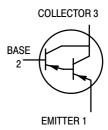
One Watt Darlington Transistors

PNP Silicon

• These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

MAXIMUM RATINGS

Rating	Symbol	MPSW63 MPSW64	Unit
Collector - Emitter Voltage	V _{CES}	-30	Vdc
Collector - Base Voltage	V _{CBO}	-30	Vdc
Emitter - Base Voltage	V _{EBO}	-10	Vdc
Collector Current — Continuous	I _C	-500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.0 8.0	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	2.5 20	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	125	°C/W
Thermal Resistance, Junction to Case	$R_{ heta JC}$	50	°C/W

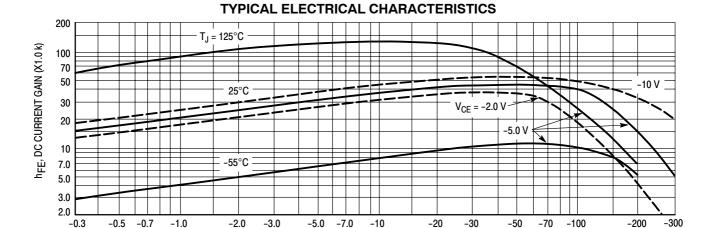
MPSW63 MPSW64*

*ON Semiconductor Preferred Device

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (I _C = –100 μAdc, V _{BE} = 0)	V _{(BR)CES}	-30	_	Vdc
Collector Cutoff Current (V _{CB} = -30 Vdc, I _E = 0)	I _{CBO}		-100	nAdc
Emitter Cutoff Current (V _{EB} = -10 Vdc, I _C = 0)	I _{EBO}	_	-100	nAdc

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.


MPSW63 MPSW64

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS ⁽¹⁾		-			
DC Current Gain ($I_C = -10 \text{ mAdc}$, $V_{CE} = -5.0 \text{ Vdc}$)	MPSW63 MPSW64	h _{FE}	5,000 10,000		_
$(I_C = -100 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc})$	MPSW63 MPSW64		10,000 20,000		
Collector–Emitter Saturation Voltage ($I_C = -100 \text{ mAdc}$, $I_B = -0.1 \text{ mAdc}$)		V _{CE(sat)}	_	-1.5	Vdc
Base-Emitter On Voltage (I _C = -100 mAdc, V _{CE} = -5.0 Vdc)		V _{BE(on)}	_	-2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		•	•	•	•
Current-Gain — Bandwidth Product ⁽²⁾ (I _C = -10 mAdc, V _{CE} = -5.0 Vdc, f = 100 MHz)		f _T	125	_	MHz

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{2.} $f_T = |h_{fe}| \cdot f_{test}$.

I_C, COLLECTOR CURRENT (mA)

Figure 1. DC Current Gain

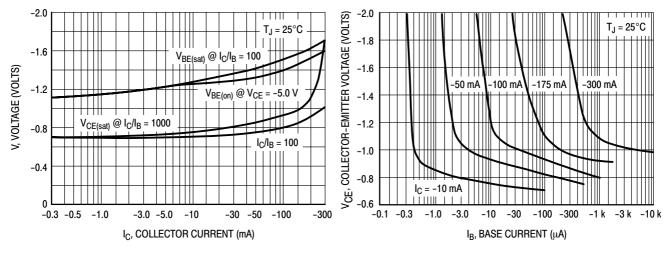
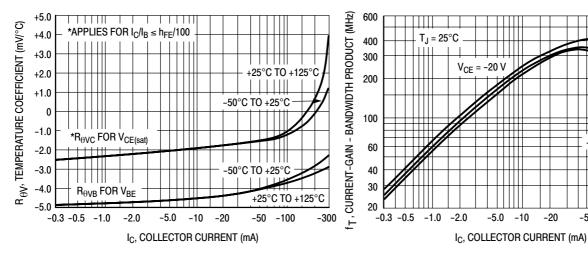



Figure 2. "ON" Voltage

Figure 3. Collector Saturation Region

MPSW63 MPSW64

Figure 4. Temperature Coefficients

Figure 5. Current-Gain — Bandwidth Product

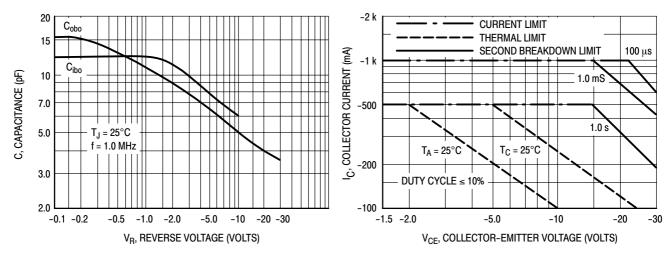
-5.0 -10 -20

-10 V

-50 -100

-5.0 \

-300



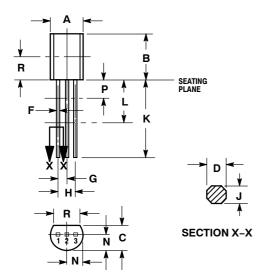

Figure 6. Capacitance

Figure 7. Active Region, Safe Operating Area

MPSW63 MPSW64

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-10 ISSUE ΔI

YLE 1:

PIN 1. EMITTER

2. BASE

3. COLLECTOR

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. CONTOUR OF PACKAGE BEYOND DIMENSION R
- IS UNCONTROLLED.
 4. DIMENSION F APPLIES BETWEEN P AND L
 DIMENSIONS D AND J APPLY BETWEEN L AND K
 MIMIMUM. LEAD DIMENSION IS UNCONTROLLED
 IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.457	0.533
F	0.016	0.019	0.407	0.482
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100	-	2.54
R	0.135		3.43	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com