

MSB92AWT1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MSB92AWT1G-DG

Manufacturer onsemi

Manufacturer Product Number MSB92AWT1G

Description TRANS PNP 300V 0.5A SC70-3

Detailed Description Bipolar (BJT) Transistor PNP 300 V 500 mA 50MHz 1

50 mW Surface Mount SC-70-3 (SOT323)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MSB92AWT1G	onsemi
Series:	Product Status:
	Active
Transistor Type:	Current - Collector (Ic) (Max):
PNP	500 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
300 V	500mV @ 2mA, 20mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
250nA (ICBO)	120 @ 1mA, 10V
Power - Max:	Frequency - Transition:
150 mW	50MHz
Operating Temperature:	Mounting Type:
150°C (TJ)	Surface Mount
Package / Case:	Supplier Device Package:
SC-70, SOT-323	SC-70-3 (SOT323)
Base Product Number:	
MCDOO	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.21.0095	

1

PNP Silicon General Purpose High Voltage Transistor

MSB92WT1G, MSB92AWT1G

This PNP Silicon Planar Transistor is designed for general purpose amplifier applications. This device is housed in the SC-70/SOT-323 package which is designed for low power surface mount applications.

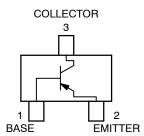
Features

 These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Symbol	Rating	Value	Unit
V _{(BR)CBO}	Collector-Base Voltage	-300	Vdc
V _{(BR)CEO}	Collector-Emitter Voltage	-300	Vdc
V _{(BR)EBO}	Emitter-Base Voltage	-5.0	Vdc
I _C	Collector Current - Continuous	500	mAdc
ESD	Electrostatic Discharge	MBM > 16,000, MM > 2,000	V

THERMAL CHARACTERISTICS


Symbol	Rating	Max	Unit
P _D	Power Dissipation (Note 1)	150	mW
TJ	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.

SC-70 (SOT-323) CASE 419 STYLE 3

MARKING DIAGRAM

xx = Device Code x= 2D or D2

M = Date Code*

Bate Gode= Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MSB92WT1G	SC-70/ SOT-323 (Pb-Free)	3,000/Tape & Reel
MSB92AWT1G	SC-70/ SOT-323 (Pb-Free)	3,000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MSB92WT1G, MSB92AWT1G

ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Min	Max	Unit	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage ($I_C = -1.0$ mAdc, $I_B = 0$)	-300	-	Vdc	
V _{(BR)CBO}	Collector-Base Breakdown Voltage $(I_C = -100 \mu Adc, I_E = 0)$	-300	-	Vdc	
V _{(BR)EBO}	Emitter-Base Breakdown Voltage $(I_E = -100 \mu Adc, I_E = 0)$	-5.0	-	Vdc	
Ісво	Collector-Base Cutoff Current (V _{CB} = -200 Vdc, I _E = 0)	-	-0.25	μΑ	
I _{EBO}	I _{EBO} Emitter-Base Cutoff Current (V _{EB} = -3.0 Vdc, I _B = 0)				
h _{FE1} h _{FE1} h _{FE2} h _{FE3}	DC Current Gain (Note 2) $ \begin{array}{lll} \text{MSB92WT1:} & (\text{V}_{\text{CE}} = -10 \text{ Vdc}, \text{ I}_{\text{C}} = -1.0 \text{ mAdc}) \\ \text{MSB92AWT1:} & (\text{V}_{\text{CE}} = -10 \text{ Vdc}, \text{ I}_{\text{C}} = -1.0 \text{ mAdc}) \\ \text{(V}_{\text{CE}} = -10 \text{ Vdc}, \text{ I}_{\text{C}} = -10 \text{ mAdc}) \\ \text{(V}_{\text{CE}} = -10 \text{ Vdc}, \text{ I}_{\text{C}} = -30 \text{ mAdc}) \\ \end{array} $		_ 200 _ _	ı	
V _{CE(sat)}	$V_{CE(sat)}$ Collector-Emitter Saturation Voltage (Note 2) (I _C = -20 mAdc, I _B = -2.0 mAdc)		-0.5	Vdc	
V _{BE(sat)}	V _{BE(sat)} Base–Emitter Saturation Voltage (I _C = -20 mAdc, I _B = -2.0 mAdc)		-0.9	Vdc	

SMALL SIGNAL CHARACTERISTICS

fτ	Current – Gain – Bandwidth Product ($I_C = -10 \text{ mAdc}$, $V_{CE} = -20 \text{ Vdc}$, $f = 20 \text{ MHz}$)	50	ı	MHz
C _{cb}	Collector–Base Capacitance ($V_{CB} = -20 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	-	6.0	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 μ s, D.C. \leq 2%.

MSB92WT1G, MSB92AWT1G

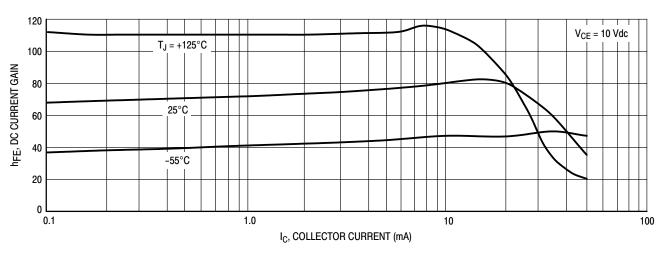


Figure 1. DC Current Gain

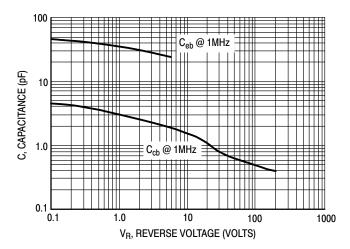
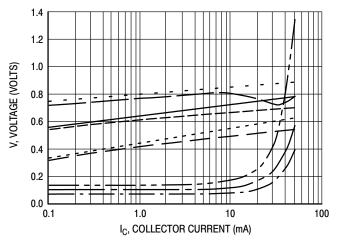
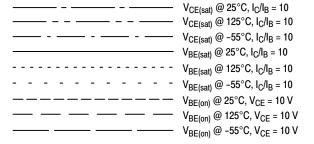
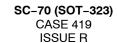
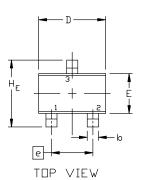


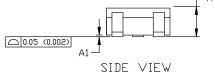
Figure 2. Capacitance

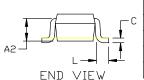




Figure 3. "ON" Voltages

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

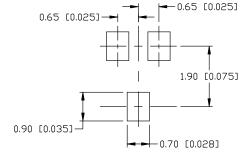



DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF			0.028 BS	C
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC				0.026 BS	C
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095



XX = Specific Device Code

= Date Code М

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.org/www.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com