

# NCP110AMX180TBG Datasheet

www.digi-electronics.com

М



| DiGi Electronics Part Number | NCP110AMX180TBG-DG                                                        |
|------------------------------|---------------------------------------------------------------------------|
| Manufacturer                 | onsemi                                                                    |
| Aanufacturer Product Number  | NCP110AMX180TBG                                                           |
| Description                  | IC REG LINEAR 1.8V 200MA 4XDFN                                            |
| Detailed Description         | Linear Voltage Regulator IC Positive Fixed 1 Output<br>200mA 4-XDFN (1x1) |
|                              |                                                                           |

https://www.DiGi-Electronics.com



Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.



# Purchase and inquiry

| Manufacturer Product Number:  | Manufacturer:                  |
|-------------------------------|--------------------------------|
| NCP110AMX180TBG               | onsemi                         |
| Series:                       | Product Status:                |
| -                             | Active                         |
| Output Configuration:         | Output Type:                   |
| Positive                      | Fixed                          |
| Number of Regulators:         | Voltage - Input (Max):         |
| 1                             | 5.5V                           |
| Voltage - Output (Min/Fixed): | Voltage - Output (Max):        |
| 1.8V                          | -                              |
| Voltage Dropout (Max):        | Current - Output:              |
| 0.12V @ 200mA                 | 200mA                          |
| Current - Quiescent (lq):     | PSRR:                          |
| 25 μΑ                         | 95dB ~ 55dB (100Hz ~ 100kHz)   |
| Control Features:             | Protection Features:           |
| Enable                        | Over Current, Over Temperature |
| Operating Temperature:        | Mounting Type:                 |
| -40°C ~ 125°C (TJ)            | Surface Mount                  |
| Package / Case:               | Supplier Device Package:       |
| 4-XDFN Exposed Pad            | 4-XDFN (1x1)                   |
| Base Product Number:          |                                |
| NCP110                        |                                |

# **Environmental & Export classification**

| RoHS Status:     | Moisture Sensitivity Level (MSL): |
|------------------|-----------------------------------|
| ROHS3 Compliant  | 1 (Unlimited)                     |
| REACH Status:    | ECCN:                             |
| REACH Unaffected | EAR99                             |
| HTSUS:           |                                   |
| 8542.39.0001     |                                   |

# onsemi

# Linear Regulator - Low V<sub>IN</sub>, Low Noise, High PSRR <sup>200 mA</sup>

# NCP110

The NCP110 is a linear regulator capable of supplying 200 mA output current from 1.1 V input voltage. The device provides wide output range from 0.6 V up to 4.0 V, very low noise and high PSRR. Due to low quiescent current the NCP110 is suitable for battery powered devices such as smartphones and tablets. The device is designed to work with a 1  $\mu$ F input and a 1  $\mu$ F output ceramic capacitor. It is available in ultra-small 0.35P, 0.64 mm x 0.64 mm Chip Scale Package (CSP) and XDFN4 0.65P, 1 mm x 1 mm.

#### Features

- Operating Input Voltage Range: 1.1 V to 5.5 V
- Available in Fixed Voltage Option: 0.6 V to 4.0 V
- ±2% Accuracy Over Temperature
- Ultra Low Quiescent Current Typ. 20 µA
- Shutdown Current: Typ. 0.01 µA
- Very Low Dropout: 70 mV for 1.05 V @ 100 mA
- High PSRR: Typ. 95 dB at 20 mA, f = 1 kHz
- Ultra Low Noise: 8.8 μV<sub>RMS</sub>
- Stable with a 1 µF Small Case Size Ceramic Capacitors
- Available in -WLCSP4 0.64 mm x 0.64 mm x 0.33 mm Case 567VS -XDFN4 1 mm x 1 mm x 0.4 mm - Case 711AJ
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

## **Typical Applications**

- Battery-powered Equipment
- Smartphone, Tablets
- Digital Cameras
- Smoke Detectors
- Portable Medical Equipment
- RF, PLL, VCO and Clock Power Supplies
- Battery Powered Wireless IoT Modules

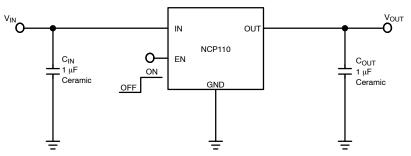
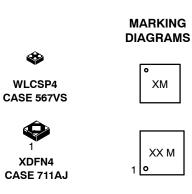
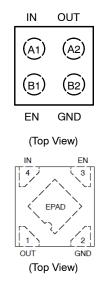
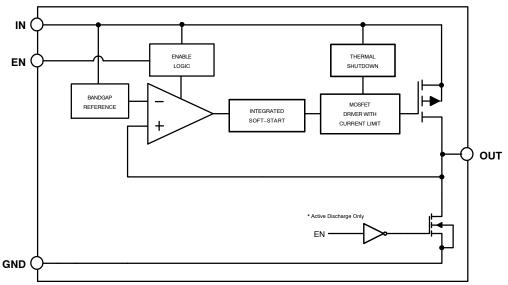





Figure 1. Typical Application Schematics




X or XX = Specific Device Code M = Date Code

#### **PIN CONNECTIONS**



#### **ORDERING INFORMATION**

See detailed ordering, marking and shipping information on page 14 of this data sheet.





|                 |                  |             | -                                                                                                        |
|-----------------|------------------|-------------|----------------------------------------------------------------------------------------------------------|
| Pin No.<br>CSP4 | Pin No.<br>XDFN4 | Pin<br>Name | Description                                                                                              |
| A1              | 4                | IN          | Input voltage supply pin                                                                                 |
| A2              | 1                | OUT         | Regulated output voltage. The output should be bypassed with small 1 $\mu\text{F}$ ceramic capacitor.    |
| B1              | 3                | EN          | Chip enable: Applying $V_{EN}$ < 0.2 V disables the regulator, Pulling $V_{EN}$ > 0.7 V enables the LDO. |

Common ground connection

#### **PIN FUNCTION DESCRIPTION**

| ABSOLUTE MAXIMUM RAT | INGS |
|----------------------|------|
|----------------------|------|

2

EPAD

GND

EPAD

B2

\_

| Rating                                        | Symbol             | Value                                   | Unit |
|-----------------------------------------------|--------------------|-----------------------------------------|------|
| Input Voltage (Note 1)                        | V <sub>IN</sub>    | –0.3 V to 6                             | V    |
| Output Voltage                                | V <sub>OUT</sub>   | –0.3 to V <sub>IN</sub> + 0.3, max. 6 V | V    |
| Chip Enable Input                             | V <sub>CE</sub>    | –0.3 to 6 V                             | V    |
| Output Short Circuit Duration                 | t <sub>SC</sub>    | unlimited                               | s    |
| Maximum Junction Temperature                  | TJ                 | 150                                     | °C   |
| Storage Temperature                           | T <sub>STG</sub>   | -55 to 150                              | °C   |
| ESD Capability, Human Body Model (Note 2)     | ESD <sub>HBM</sub> | 2000                                    | V    |
| ESD Capability, Charged Device Model (Note 2) | ESD <sub>CDM</sub> | 1000                                    | V    |

Expose pad can be tied to ground plane for better power dissipation

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per EIA/JESD22-A114

ESD Charged Device Model tested per JS-002-2018

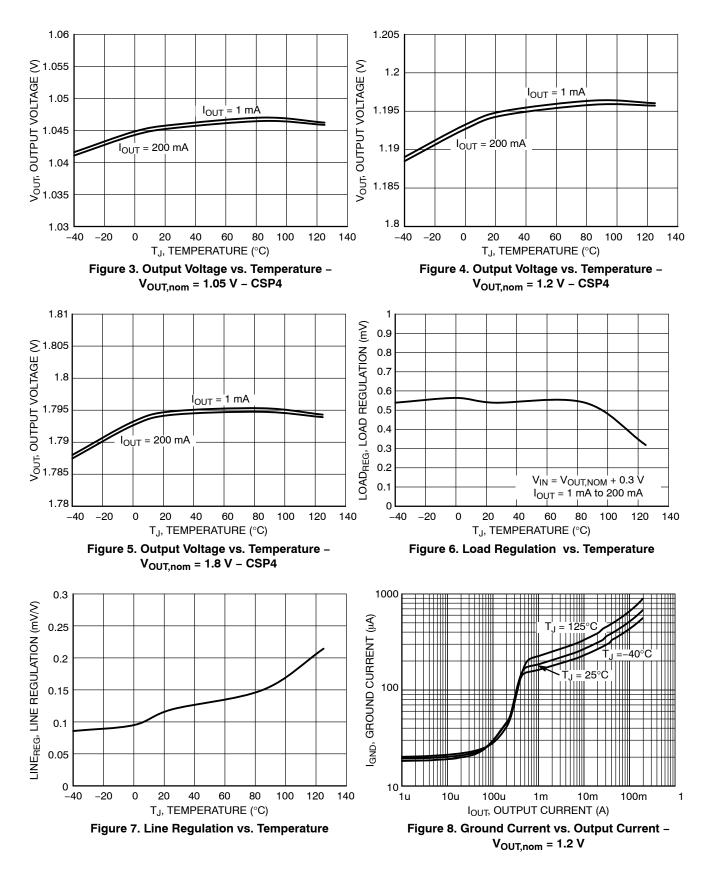
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.

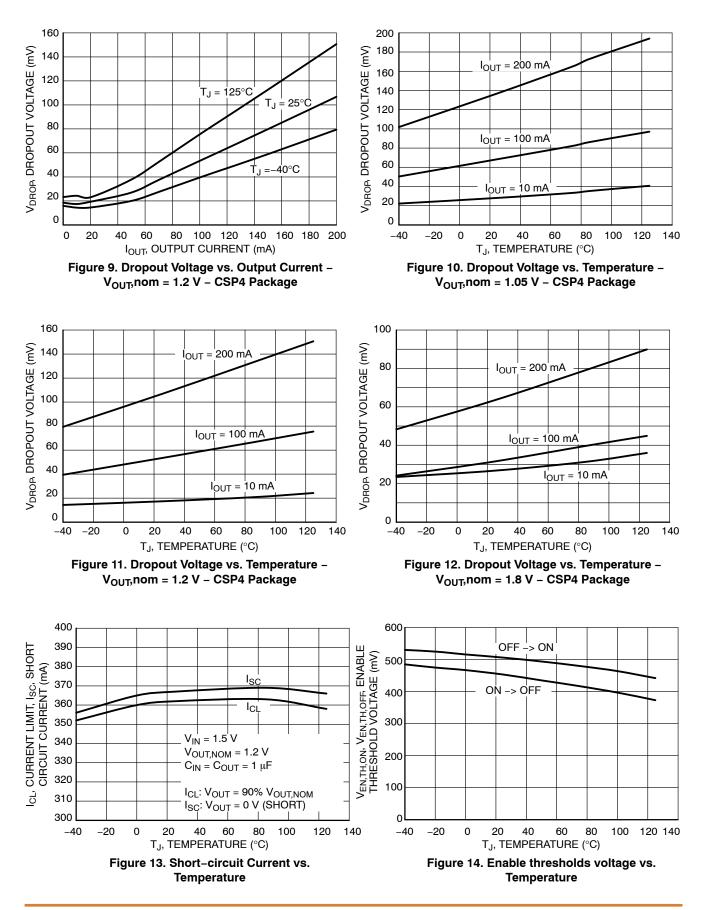
#### THERMAL CHARACTERISTICS

| Rating                                                                         | Symbol        | Value | Unit |
|--------------------------------------------------------------------------------|---------------|-------|------|
| Thermal Characteristics, CSP4 (Note 3)<br>Thermal Resistance, Junction-to-Air  | P             | 108   | °C/W |
| Thermal Characteristics, XDFN4 (Note 3)<br>Thermal Resistance, Junction-to-Air | $R_{	hetaJA}$ | 208   | 0/00 |

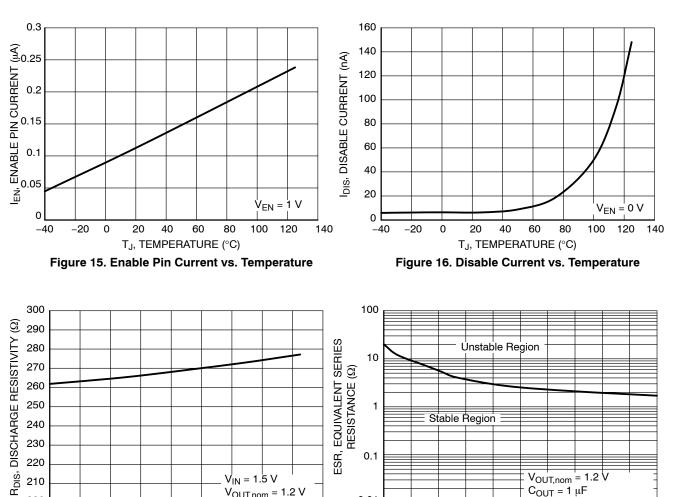
3. Measured according to JEDEC board specification. Detailed description of the board can be found in JESD51-7

| Parameter                               | Test Conditions                                                         |                                                                                                             | Symbol              | Min | Тур                  | Max | Unit          |
|-----------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------|-----|----------------------|-----|---------------|
| Operating Input Voltage                 |                                                                         |                                                                                                             |                     | 1.1 | 1                    | 5.5 | V             |
| Output Voltage Accuracy                 | $V_{IN} = V_{OUT(NOM)} + 0.3 V$<br>( $V_{IN} \ge 1.1 V$ )               | $V_{OUT(NOM)} \le 1.5 \text{ V}$                                                                            | V <sub>OUT</sub>    | -30 |                      | +30 | mV            |
|                                         | (V <sub>IN</sub> ≥ 1.1 V)                                               | V <sub>OUT(NOM) &gt;</sub> 1.5 V                                                                            |                     | -2  |                      | +2  | %             |
| Line Regulation                         | $V_{OUT(NOM)} + 0.5 \text{ V} \leq \text{V}_{IN} \leq$                  | 5.5 V, (V <sub>IN</sub> ≥ 1.1 V)                                                                            | Line <sub>Reg</sub> |     | 0.02                 |     | %/V           |
| Load Regulation                         | I <sub>OUT</sub> = 1 mA to                                              | 200 mA                                                                                                      | Load <sub>Reg</sub> |     | 0.001                |     | %/mA          |
| Dropout Voltage (Note 5)                | V <sub>OUT(NOM)</sub> = 1.05 V                                          | I <sub>OUT</sub> = 50 mA                                                                                    | V <sub>DO</sub>     |     | 40                   | 70  | mV            |
|                                         |                                                                         | I <sub>OUT</sub> = 100 mA                                                                                   |                     |     | 70                   | 130 |               |
|                                         | V <sub>OUT(NOM)</sub> = 1.20 V                                          | l <sub>OUT</sub> = 110 mA                                                                                   |                     |     | 60                   | 140 |               |
|                                         |                                                                         | I <sub>OUT</sub> = 200 mA                                                                                   |                     |     | 110                  | 190 |               |
|                                         | V <sub>OUT(NOM)</sub> = 1.80 V                                          | I <sub>OUT</sub> = 200 mA                                                                                   |                     |     | 65                   | 120 |               |
|                                         | V <sub>OUT(NOM)</sub> = 2.80 V                                          | I <sub>OUT</sub> = 200 mA                                                                                   |                     |     | 45                   | 100 |               |
| Output Current Limit                    | V <sub>OUT</sub> = 90% V <sub>OUT(NOM)</sub>                            |                                                                                                             | I <sub>CL</sub>     | 225 | 300                  |     |               |
| Short Circuit Current                   | V <sub>OUT</sub> = 0                                                    | V                                                                                                           | I <sub>SC</sub>     |     | 300                  |     | mA            |
| Quiescent Current                       | I <sub>OUT</sub> = 0 mA                                                 |                                                                                                             | l <sub>Q</sub>      |     | 20                   | 25  | μA            |
| Shutdown Current                        | $V_{EN} \leq 0.2 \text{ V}, \text{ V}_{IN} = 1.1 \text{ V}$             |                                                                                                             | I <sub>DIS</sub>    |     | 0.01                 | 1.0 | μA            |
| EN Pin Threshold Voltage                | EN Input Voltage "H"                                                    |                                                                                                             | V <sub>ENH</sub>    | 0.7 |                      |     | .,            |
|                                         | EN Input Voltage "L"                                                    |                                                                                                             | V <sub>ENL</sub>    |     | 1                    | 0.2 | V             |
| EN Pull Down Current                    | V <sub>EN</sub> = 1.1                                                   | V                                                                                                           | I <sub>EN</sub>     |     | 0.2                  | 0.5 | μA            |
| Turn–On Time                            | $C_{OUT}$ = 1 µF, From asse $V_{OUT}$ = 95% $V_{O}$                     | $C_{OUT} = 1 \ \mu$ F, From assertion of V <sub>EN</sub> to<br>V <sub>OUT</sub> = 95% V <sub>OUT(NOM)</sub> |                     |     | 120                  |     | μs            |
| Power Supply Rejection Ratio            | I <sub>OUT</sub> = 20 mA,<br>V <sub>IN</sub> = V <sub>OUT</sub> + 0.3 V | f = 100 Hz<br>f = 1 kHz<br>f = 10 kHz<br>f = 100 kHz                                                        | PSRR                |     | 90<br>95<br>85<br>55 |     | dB            |
| Output Voltage Noise                    | f = 10 Hz to 100 kHz                                                    |                                                                                                             | V <sub>N</sub>      |     | 8.8                  |     | $\mu V_{RMS}$ |
| Thermal Shutdown Threshold              | Temperature rising                                                      |                                                                                                             | T <sub>SDH</sub>    |     | 160                  |     | °C            |
|                                         | Temperature falling                                                     |                                                                                                             | T <sub>SDL</sub>    |     | 140                  |     | °C            |
| Active Output Discharge Resis-<br>tance | V <sub>EN</sub> < 0.2 V, Vers                                           | on A only                                                                                                   | R <sub>DIS</sub>    |     | 280                  |     | Ω             |


**ELECTRICAL CHARACTERISTICS**  $-40^{\circ}C \le T_J \le 125^{\circ}C$ ;  $V_{IN} = V_{OUT(NOM)} + 0.3$  V or 1.1 V, whichever is greater;  $I_{OUT} = 1$  mA,  $C_{IN} = 1$  mA,  $C_{OUT} = 1 \ \mu$ F, unless otherwise noted.  $V_{EN} = 1.0 \ V$ . Typical values are at  $T_J = +25^{\circ}C$  (Note 4).


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at  $T_A = 25^{\circ}C$ . Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.


5. Dropout voltage is characterized when  $V_{OUT}$  falls 0.02 x  $V_{OUT(NOM)}$  below  $V_{OUT(NOM)}$ . 6. Guaranteed by design.











0.01

0 20 40 60 80

IOUT, OUTPUT CURRENT (mA)

Figure 18. Maximum C<sub>OUT</sub> ESR Value vs.

**Output Current** 

V<sub>IN</sub> = 1.5 V

80

V<sub>OUT,nom</sub> = 1.2 V

100

120

140

210

200

-40

-20

0

20

40

T<sub>J</sub>, TEMPERATURE (°C) Figure 17. Discharge Resistivity vs.

Temperature

60

V<sub>OUT,nom</sub> = 1.2 V C<sub>OUT</sub> = 1 μF

100 120 140 160 180 200



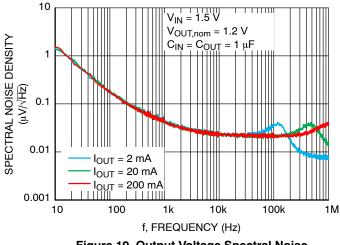
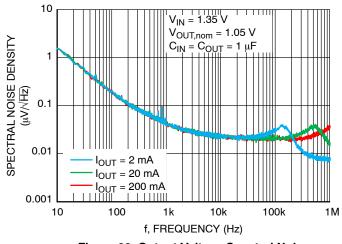
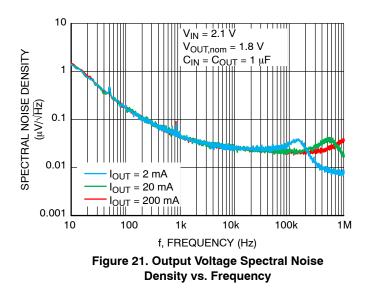
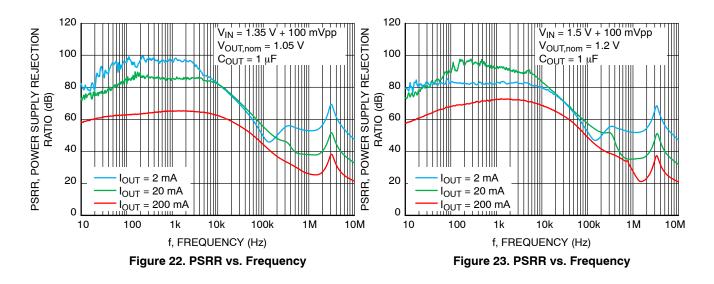
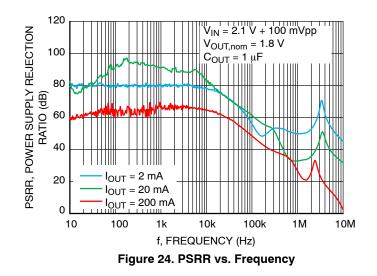


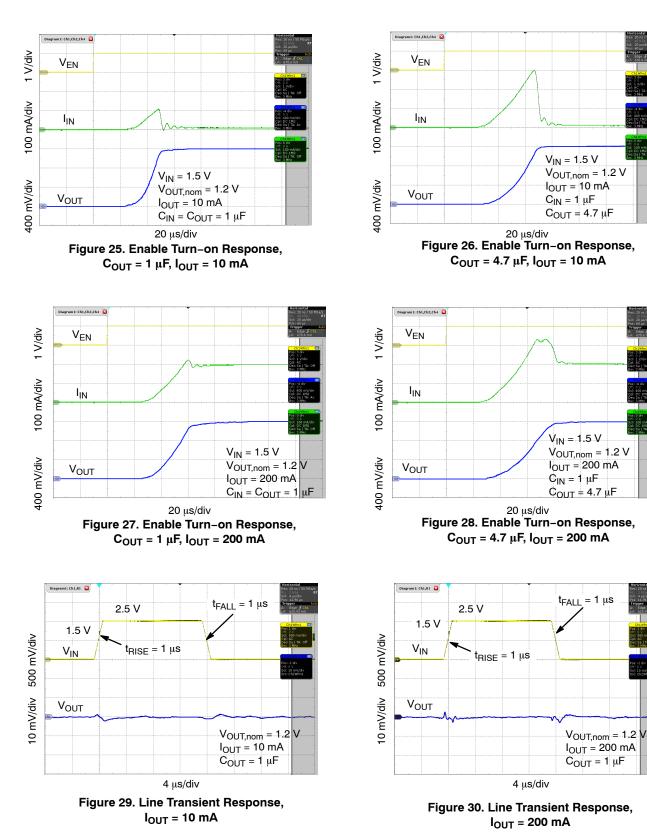

Figure 19. Output Voltage Spectral Noise Density vs. Frequency

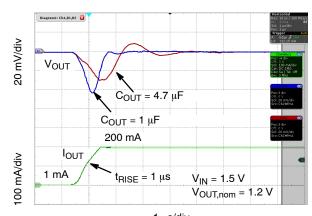


Figure 20. Output Voltage Spectral Noise Density vs. Frequency



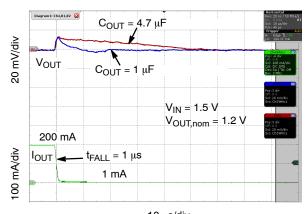

| I <sub>OUT</sub> | RMS Output Noise (µV) |                  |  |
|------------------|-----------------------|------------------|--|
| (mA)             | 10 Hz – 100 kHz       | 100 Hz – 100 kHz |  |
| 2                | 10.01                 | 8.79             |  |
| 20               | 8.78                  | 7.39             |  |
| 200              | 8.77                  | 7.44             |  |


| I <sub>OUT</sub> | RMS Output Noise (µV) |                  |  |  |  |
|------------------|-----------------------|------------------|--|--|--|
| (mA)             | 10 Hz – 100 kHz       | 100 Hz – 100 kHz |  |  |  |
| 2                | 10.01                 | 8.79             |  |  |  |
| 20               | 8.78                  | 7.39             |  |  |  |
| 200              | 8.77                  | 7.44             |  |  |  |

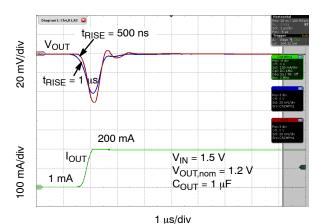
| IOUT | RMS Output Noise (µV) |                  |  |  |
|------|-----------------------|------------------|--|--|
| (mA) | 10 Hz – 100 kHz       | 100 Hz – 100 kHz |  |  |
| 2    | 9.88                  | 8.71             |  |  |
| 20   | 9.01                  | 7.73             |  |  |
| 200  | 9.08                  | 7.70             |  |  |

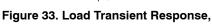






# **TYPICAL CHARACTERISTICS**




www.onsemi.com




 $1 \ \mu \text{s/div}$  Figure 31. Load Transient Response, I<sub>OUT</sub> = 1 mA to 200 mA



 $\begin{array}{l} 10 \ \mu \text{s/div} \\ \text{Figure 32. Load Transient Response,} \\ I_{OUT} = 1 \ \text{mA to 200 mA} \end{array}$ 





I<sub>OUT</sub> = 1 mA to 200 mA

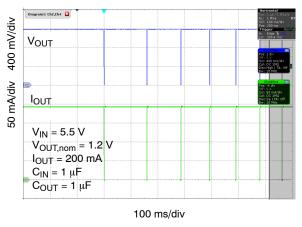
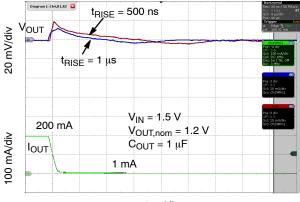




Figure 35. Overheating Protection – TSD



4 μs/div

Figure 34. Load Transient Response, I<sub>OUT</sub> = 1 mA to 200 mA

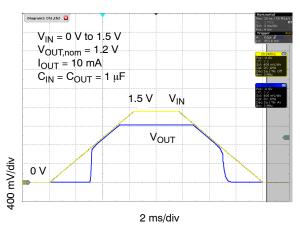



Figure 36. Turn On/Off, Slow Rising VIN

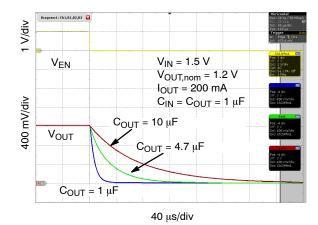



Figure 37. Enable Turn–off Response, Various Output Capacitors

#### **APPLICATIONS INFORMATION**

#### General

The NCP110 is an ultra-low input voltage, ultra-low noise 200 mA low dropout regulator designed to meet the requirements of low voltage RF applications and high performance analog circuits. The NCP110 device provides very high PSRR and excellent dynamic response. In connection with low quiescent current this device is well suitable for battery powered application such as cell phones, tablets and other. The NCP110 is fully protected in case of current overload, output short circuit and overheating.

#### Input Capacitor Selection (CIN)

Input capacitor connected as close as possible is necessary for ensure device stability. The X7R or X5R capacitor should be used for reliable performance over temperature range. The value of the input capacitor should be 1  $\mu$ F or greater to ensure the best dynamic performance. This capacitor will provide a low impedance path for unwanted AC signals or noise modulated onto constant input voltage. There is no requirement for the ESR of the input capacitor but it is recommended to use ceramic capacitors for their low ESR and ESL. A good input capacitor will limit the influence of input trace inductance and source resistance during sudden load current changes.

#### **Output decoupling**

The NCP110 requires an output capacitor connected as close as possible to the output pin of the regulator. The recommended capacitor value is  $1\mu$ F and X7R or X5R dielectric due to its low capacitance variations over the specified temperature range. The NCP110 is designed to remain stable with minimum effective capacitance of  $0.6\mu$ F to account for changes with temperature, DC bias and package size. Especially for small package size capacitors such as 0201 the effective capacitance drops rapidly with the applied DC bias. Please refer to Figure 38.

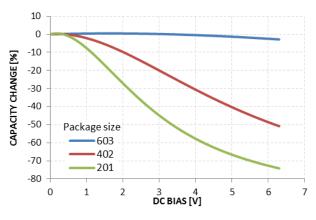



Figure 38. Capacity vs DC Bias Voltage

There is no requirement for the minimum value of Equivalent Series Resistance (ESR) for the  $C_{OUT}$  but the maximum value of ESR should be less than 1.6  $\Omega$ . Larger

output capacitors and lower ESR could improve the load transient response or high frequency PSRR. It is not recommended to use tantalum capacitors on the output due to their large ESR. The equivalent series resistance of tantalum capacitors is also strongly dependent on the temperature, increasing at low temperature.

#### **Enable Operation**

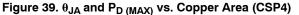
The NCP110 uses the EN pin to enable/disable its device and to deactivate/activate the active discharge function. If the EN pin voltage is <0.2 V the device is guaranteed to be disabled. The pass transistor is turned–off so that there is virtually no current flow between the IN and OUT. The active discharge transistor is active so that the output voltage V<sub>OUT</sub> is pulled to GND through a 280  $\Omega$  resistor. In the disable state the device consumes as low as typ. 10 nA from the V<sub>IN</sub>. If the EN pin voltage >0.7 V the device is guaranteed to be enabled. The NCP110 regulates the output voltage and the active discharge transistor is turned–off. The EN pin has internal pull–down current source with typ. value of 200 nA which assures that the device is turned–off when the EN pin is not connected. In the case where the EN function isn't required the EN should be tied directly to IN.

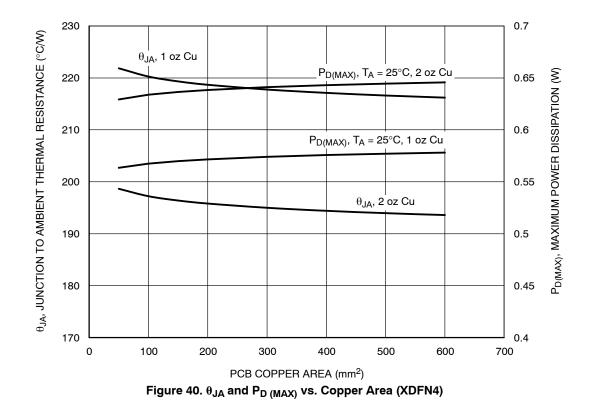
#### **Output Current Limit**

Output Current is internally limited within the IC to a typical 300 mA. The NCP110 will source this amount of current measured with a voltage drops on the 90% of the nominal  $V_{OUT}$ . If the Output Voltage is directly shorted to ground ( $V_{OUT} = 0$  V), the short circuit protection will limit the output current to 300 mA (typ). The current limit and short circuit protection will work properly over whole temperature range and also input voltage range. There is no limitation for the short circuit duration.

#### Thermal Shutdown

When the die temperature exceeds the Thermal Shutdown threshold (TSD –  $160^{\circ}$ C typical), Thermal Shutdown event is detected and the device is disabled. The IC will remain in this state until the die temperature decreases below the Thermal Shutdown Reset threshold (TSDU –  $140^{\circ}$ C typical). Once the IC temperature falls below the 140°C the LDO is enabled again. The thermal shutdown feature provides the protection from a catastrophic device failure due to accidental overheating. This protection is not intended to be used as a substitute for proper heat sinking.


#### **Power Dissipation**


As power dissipated in the NCP110 increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature

rise for the part. The maximum power dissipation the NCP110 can handle is given by:

The power dissipated by the NCP110 for given application conditions can be calculated from the following equations:

$$P_{D(MAX)} = \frac{\left[125^{\circ}C - T_{A}\right]}{\theta_{JA}} \qquad (eq. 1) \qquad P_{D} \approx V_{IN} \cdot I_{GND} + I_{OUT}(V_{IN} - V_{OUT}) \qquad (eq. 2)$$



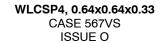


www.onsemi.com

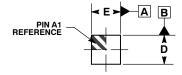
#### **ORDERING INFORMATION**

| Device                    | Nominal<br>Output Voltage | Marking | Rotation   | Description    | Package                 | Shipping <sup>†</sup>   |  |  |
|---------------------------|---------------------------|---------|------------|----------------|-------------------------|-------------------------|--|--|
| NCP110AFCT060T2G (Note 8) | 0.60 V                    | C       | 0°         | 200 mA, Active | WLCSP4                  | 5000 or 10000 /         |  |  |
| NCP110AFCT080T2G (Note 8) | 0.80 V                    | J       | 0°         | Discharge      | CASE 567VS<br>(Pb-Free) | Tape & Reel<br>(Note 8) |  |  |
| NCP110AFCT085T2G (Note 8) | 0.85 V                    | 2       | <b>0</b> ° |                |                         |                         |  |  |
| NCP110AFCT100T2G (Note 8) | 1.00 V                    | T       | <b>0</b> ° |                |                         |                         |  |  |
| NCP110AFCT105T2G (Note 8) | 1.05 V                    | Ā       | <b>0</b> ° |                |                         |                         |  |  |
| NCP110AFCT110T2G (Note 8) | 1.10 V                    | G       | <b>0</b> ° |                |                         |                         |  |  |
| NCP110AFCT120T2G (Note 8) | 1.20 V                    | F       | <b>0</b> ° |                |                         |                         |  |  |
| NCP110AFCT180T2G (Note 8) | 1.80 V                    | D       | <b>0</b> ° |                |                         |                         |  |  |
| NCP110AFCT280T2G (Note 8) | 2.80 V                    | Ē       | <b>0</b> ° |                |                         |                         |  |  |

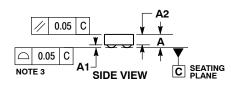
#### **ORDERING INFORMATION**

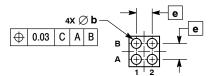

| Device                   | Nominal<br>Output Voltage | Marking | Description              | Package                          | Shipping <sup>†</sup>                     |
|--------------------------|---------------------------|---------|--------------------------|----------------------------------|-------------------------------------------|
| NCP110AMX060TBG (Note 7) | 0.60 V                    | FC      | 200 mA, Active Discharge | XDFN4<br>CASE 711AJ<br>(Pb-Free) | 3000 or 5000 /<br>Tape & Reel<br>(Note 7) |
| NCP110AMX075TBG          | 0.75 V                    | F3      |                          |                                  |                                           |
| NCP110AMX080TBG (Note 7) | 0.80 V                    | FJ      |                          |                                  |                                           |
| NCP110AMX085TBG (Note 7) | 0.85 V                    | F2      |                          |                                  |                                           |
| NCP110AMX100TBG (Note 7) | 1.00 V                    | FG      |                          |                                  |                                           |
| NCP110AMX105TBG (Note 7) | 1.05 V                    | FA      |                          |                                  |                                           |
| NCP110AMX110TBG (Note 7) | 1.10 V                    | FH      |                          |                                  |                                           |
| NCP110AMX120TBG (Note 7) | 1.20 V                    | FF      |                          |                                  |                                           |
| NCP110AMX180TBG (Note 7) | 1.80 V                    | FD      | 1                        |                                  |                                           |
| NCP110AMX280TBG (Note 7) | 2.80 V                    | FE      |                          |                                  |                                           |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u>
7. Product processed after October 1, 2022 are shipped with quantity 5000 units / tape & reel.
8. Product processed after April 1, 2023 are shipped with quantity 10000 units / tape & reel.


# semi

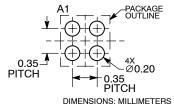
#### **MECHANICAL CASE OUTLINE** PACKAGE DIMENSIONS




#### DATE 25 JAN 2018










**BOTTOM VIEW** 

#### RECOMMENDED **SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.

- 2. CONTROLLING DIMENSION: MILLIMETERS. 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

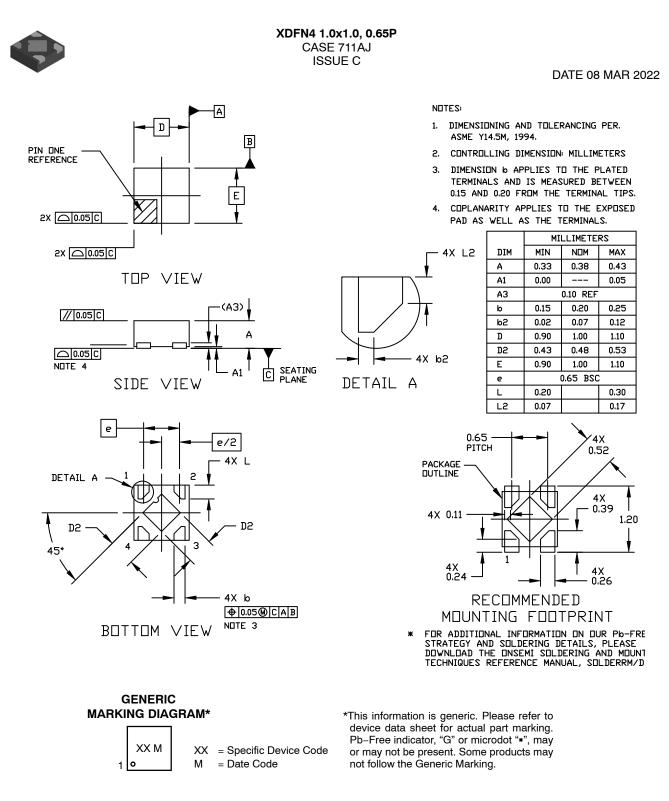
|     | MILLIMETERS |       |       |  |
|-----|-------------|-------|-------|--|
| DIM | MIN         | NOM   | MAX   |  |
| Α   |             |       | 0.33  |  |
| A1  | 0.04        | 0.06  | 0.08  |  |
| A2  | 0.23 REF    |       |       |  |
| b   | 0.180       | 0.200 | 0.220 |  |
| D   | 0.610       | 0.640 | 0.670 |  |
| Е   | 0.610       | 0.640 | 0.670 |  |
| е   | 0.35 BSC    |       |       |  |

GENERIC **MARKING DIAGRAM\*** 



Х = Specific Device Code Μ = Month

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " .", may or may not be present. Some products may not follow the Generic Marking.


| DOCUMENT NUMBER: | 98AON82946G            | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | WLCSP4, 0.64X0.64X0.33 |                                                                                                                                                                                     | PAGE 1 OF 1 |
| <b>[</b>         |                        |                                                                                                                                                                                     |             |

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make charges without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



**MECHANICAL CASE OUTLINE** 

PACKAGE DIMENSIONS



| DOCUMENT NUMBER: | 98AON67179E           | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | XDFN4, 1.0X1.0, 0.65P |                                                                                                                                                                                     | PAGE 1 OF 1 |
|                  |                       |                                                                                                                                                                                     |             |

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales



# **OUR CERTIFICATE**

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <section-header></section-header>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Marginary     Marginary       Marginary | Market | Marchine     Marchine     Image: Control of the sector of the sec |  |





Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.