

NCP803SN308T1G Datasheet

DiGi Electronics Part Number

www.digi-electronics.com

Didi Electronics Full Humber	
Manufacturer	onsemi
Manufacturer Product Number	NCP803SN308T1G
Description	IC SUPERVISOR 1 CHANNEL SOT23-3
Detailed Description	Supervisor Open Drain or Open Collector 1 Channe

NCP803SN308T1G-DG

l SOT-23-3 (TO-236)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NCP803SN308T1G	onsemi
Series:	Product Status:
	Obsolete
DiGi-Electronics Programmable:	Туре:
Not Verified	Simple Reset/Power-On Reset
Number of Voltages Monitored:	Voltage - Threshold:
1	3.08V
Output:	Reset:
Open Drain or Open Collector	Active Low
Reset Timeout:	Operating Temperature:
140ms Minimum	-40°C ~ 105°C (TJ)
Mounting Type:	Package / Case:
Surface Mount	TO-236-3, SC-59, SOT-23-3
Supplier Device Package:	Base Product Number:
SOT-23-3 (TO-236)	NCP803

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

onsemi

Very Low Supply Current 3-Pin Microprocessor Reset Monitor

MAX803 Series, NCP803 Series

The MAX803/NCP803 is a cost–effective system supervisor circuit designed to monitor $V_{\rm CC}$ in digital systems and provide a reset signal to the host processor when necessary. No external components are required.

The reset output is driven active within 10 μ sec of V_{CC} falling through the reset voltage threshold. Reset is maintained active for a timeout period which is trimmed by the factory after V_{CC} rises above the reset threshold. The MAX803/NCP803 has an open drain active–low RESET output. Both devices are available in SOT–23 and SC–70 packages.

The MAX803/NCP803 is optimized to reject fast transient glitches on the V_{CC} line. Low supply current of 0.5 μ A (V_{CC} = 3.2 V) make these devices suitable for battery powered applications.

Features

- Precision V_{CC} Monitor for 1.5 V, 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies
- Precision Monitoring Voltages from 1.2 V to 4.9 V Available in 100 mV Steps
- Four Guaranteed Minimum Power–On Reset Pulse Width Available (1 ms, 20 ms, 100 ms, and 140 ms)
- $\overline{\text{RESET}}$ Output Guaranteed to $V_{CC} = 1.0 \text{ V}$
- Low Supply Current
- V_{CC} Transient Immunity
- No External Components
- Wide Operating Temperature: -40°C to 105°C
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- Computers
- Embedded Systems
- Battery Powered Equipment
- Critical Microprocessor Power Supply Monitoring

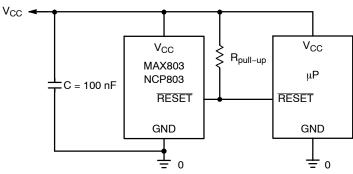
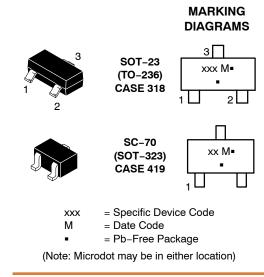
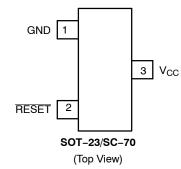
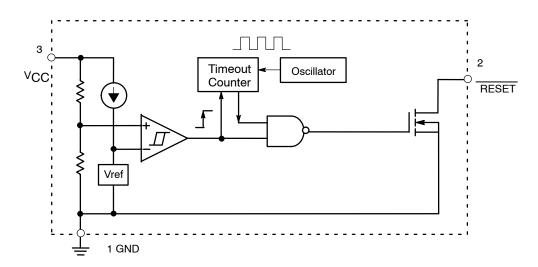




Figure 1. Typical Application Diagram


ORDERING INFORMATION

See detailed ordering and shipping information page 9 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 9.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 9 of this data sheet.

PIN DESCRIPTION

Pin No.	Symbol	Description
1	GND	Ground
2	RESET	RESET output remains low while V_{CC} is below the reset voltage threshold, and for a reset timeout period after V_{CC} rises above reset threshold.
3	V _{CC}	Supply Voltage: C = 100 nF is recommended as a bypass capacitor between V_{CC} and GND.

ABSOLUTE MAXIMUM RATINGS

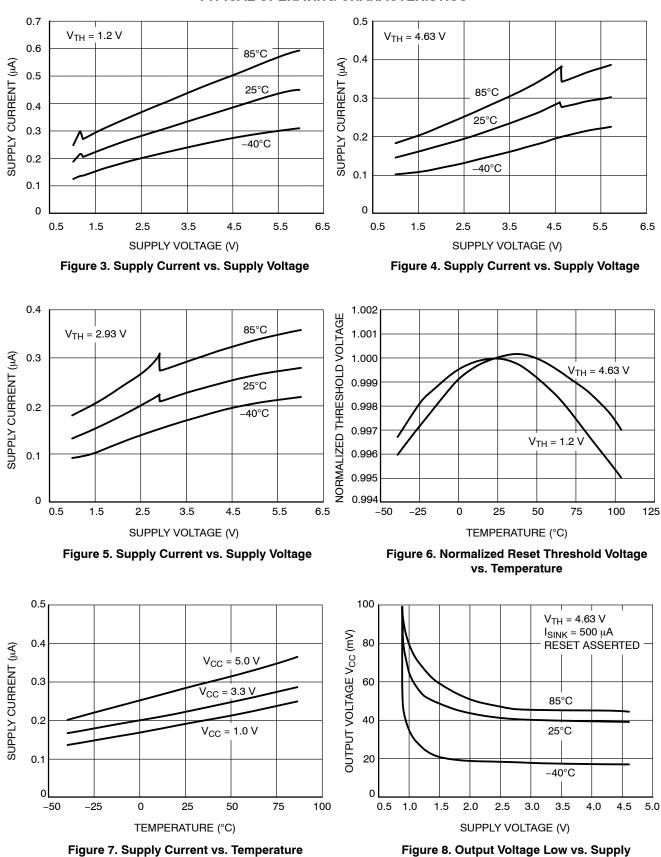
Rating	Symbol	Value	Unit
Power Supply Voltage (V _{CC} to GND)	V _{CC}	-0.3 to 6.0	V
RESET Output Voltage (CMOS)		-0.3 to (V _{CC} + 0.3)	V
Input Current, V _{CC}		20	mA
Output Current, RESET		20	mA
dV/dt (V _{CC})		100	V/µsec
Thermal Resistance, Junction-to-Air (Note 1) SOT-2 SC-7		301 314	°C/W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	T _{sol}	+260	°C
ESD Protection Human Body Model (HBM): Following Specification JESD22-A114 Machine Model (MM): Following Specification JESD22-A115		2000 200	V
Latchup Current Maximum Rating: Following Specification JESD78 Class II Positiv Negativ	-	200 200	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This based on a 35x35x1.6mm FR4 PCB with 10mm² of 1 oz copper traces under natural convention conditions and a single component characterization.

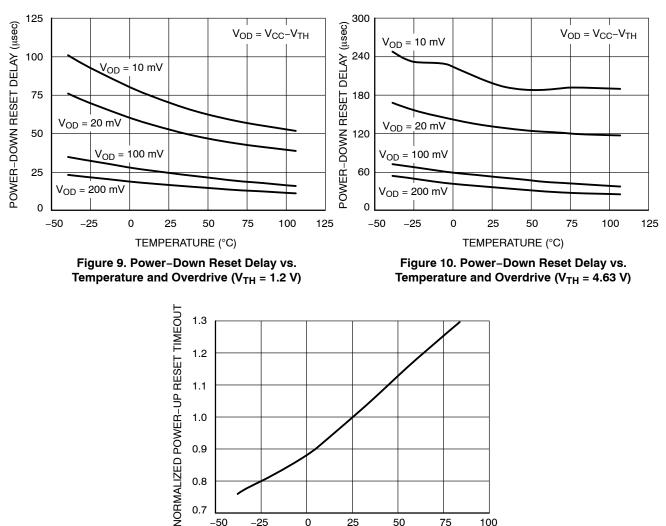
2. The maximum package power dissipation limit must not be exceeded.

$$P_{D} = \frac{T_{J}(max) - T_{A}}{R_{\theta}JA} \qquad \text{with } T_{J}(max) = 150^{\circ}C$$


ELECTRICAL CHARACTERISTICS $T_A = -40^{\circ}C$ to $+105^{\circ}C$ unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 3)

Characteristic	Symbol	Min	Тур	Max	Unit
V_{CC} Range $T_A = 0^{\circ}C$ to +70°C $T_A = -40^{\circ}C$ to +105°C (Note 4)		1.0 1.2		5.5 5.5	V
Supply Current $ \begin{array}{c} V_{CC}=3.3 \ V \\ T_{A}=-40^{\circ}C \ to \ +85^{\circ}C \\ T_{A}=85^{\circ}C \ to \ +105^{\circ}C \ (Note \ 5) \\ V_{CC}=5.5 \ V \end{array} $	Icc	- -	0.5 -	1.2 2.0	μΑ
$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		-	0.8 -	1.8 2.5	
Reset Threshold (V _{in} Decreasing) (Note 6) MAX803SQ463/NCP803SN463 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C (Note 5)	V _{TH}	4.56 4.51 4.40	4.63 _ _	4.70 4.75 4.88	V
$\begin{array}{l} \mbox{MAX803SQ438/NCP803SN438} \\ T_{A} = +25^{\circ}\mbox{C} \\ T_{A} = -40^{\circ}\mbox{C} \mbox{ to } +85^{\circ}\mbox{C} \\ T_{A} = +85^{\circ}\mbox{C} \mbox{ to } +105^{\circ}\mbox{C} \mbox{ (Note 5)} \end{array}$		4.31 4.27 4.16	4.38	4.45 4.49 4.60	
NCP803SN400 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		3.94 3.90 3.80	4.00	4.06 4.10 4.20	
MAX803SQ308/NCP803SN308 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		3.04 3.00 2.92	3.08 _ _	3.11 3.15 3.23	
$\begin{array}{l} \mbox{MAX803SQ293/NCP803SN293} \\ T_{A} = +25^{\circ}\mbox{C} \\ T_{A} = -40^{\circ}\mbox{C} \mbox{ to } +85^{\circ}\mbox{C} \\ T_{A} = +85^{\circ}\mbox{C} \mbox{ to } +105^{\circ}\mbox{C} \mbox{ (Note 5)} \end{array}$		2.89 2.85 2.78	2.93 _ _	2.96 3.00 3.08	
NCP803SN263 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C (Note 5)		2.59 2.55 2.50	2.63 _ _	2.66 2.70 2.76	
NCP803SN232 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		2.29 2.26 2.20	2.32 _ _	2.35 2.38 2.45	
NCP803SN160 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C (Note 5)		1.58 1.56 1.52	1.60 _ _	1.62 1.64 1.68	
MAX803SN120, MAX803SQ120 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$ $T_A = +85^{\circ}C$ to $+105^{\circ}C$ (Note 5)		1.18 1.17 1.14	1.20 _ _	1.22 1.23 1.26	
Detector Voltage Threshold Temperature Coefficient		-	30	-	ppm/°C
V_{CC} to Reset Delay V_{CC} = V_{TH} to (V_{TH} – 100 mV)		-	10	-	μsec
Reset Active TimeOut Period (Note 6) MAX803SN(Q)293D1 MAX803SN(Q)293D2/MAX803SN(Q)308D2 MAX803SN(Q)293D3 MAX803SN(Q)293	t _{RP}	1.0 20 100 140		3.3 66 330 460	msec

ELECTRICAL CHARACTERISTICS $T_A = -40^{\circ}C$ to $+105^{\circ}C$ unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 3)


Characteristic	Symbol	Min	Тур	Max	Unit
$\label{eq:RESET} \begin{array}{ c c c c } \hline RESET & Output \ Voltage \ Low \\ & V_{CC} = V_{TH} - 0.2 \ V \\ & 1.6 \ V \leq V_{TH} \leq 2.0 \ V, \ I_{SINK} = 0.5 \ mA \\ & 2.1 \ V \leq V_{TH} \leq 4.0 \ V, \ I_{SINK} = 1.2 \ mA \\ & 4.1 \ V \leq V_{TH} \leq 4.9 \ V, \ I_{SINK} = 3.2 \ mA \end{array}$	V _{OL}	-	-	0.3	V
RESET Leakage Current $V_{CC} > V_{TH}$, RESET De-asserted	I _{LEAK}	-	-	1	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Production testing done at $T_A = 25^{\circ}$ C, over temperature limits guaranteed by design. 4. For NCV automotive devices, this temperature range is $T_A = -40^{\circ}$ C to $+125^{\circ}$ C. 5. For NCV automotive devices, this temperature range is $T_A = +85^{\circ}$ C to $+125^{\circ}$ C. 6. Contact your **onsemi** sales representative for other threshold voltage and timeout options.

TYPICAL OPERATING CHARACTERISTICS

Voltage

1.0

0.9

0.8

0.7 -50

-25

0

25

TEMPERATURE (°C) Figure 11. Normalized Power–Up Reset vs. Temperature

50

100

75

TYPICAL OPERATING CHARACTERISTICS

www.onsemi.com 6

Detail Operation Description

The MAX803, NCP803 series microprocessor reset supervisory circuits are designed to monitor the power supplies in digital systems and provide a reset signal to the processor without any external components. Figure 2 shows the timing diagram and a typical application below. Initially consider that input voltage V_{CC} is at a nominal level greater than the voltage detector upper threshold (v_{TH}). And the

RESET (RESET) output voltage (Pin 2) will be in the high state for MAX803 and NCP803 devices. If there is an input

power interruption and V_{CC} becomes significantly deficient, it will fall below the lower detector threshold (V_{TH-}). This event causes the RESET output to be in the low state for the MAX803 and NCP803 devices. After completion of the power interruption, V_{CC} will rise to its nominal level and become greater than the V_{TH} . This sequence activates the internal oscillator circuitry and digital counter to count. After the count of the timeout period, the reset output will revert back to the original state.

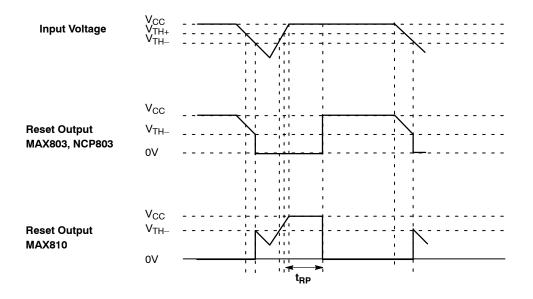
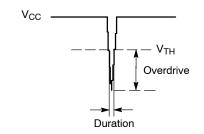



Figure 12. Timing Waveforms

APPLICATIONS INFORMATION

V_{CC} Transient Rejection

The MAX803/NCP803 series provides accurate V_{CC} monitoring and reset timing during power–up, power–down, and brownout/sag conditions, and rejects negative–going transients (glitches) on the power supply line. Figure 13 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power–down. Typically, transient that goes 100 mV below the reset threshold and lasts 5.0 µs or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the V_{CC} pin of the MAX803.

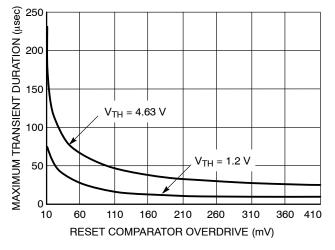


Figure 13. Maximum Transient Duration vs. Overdrive for Glitch Rejection at 25°C

RESET Signal Integrity During Power–Down

The MAX803/NCP803 $\overline{\text{RESET}}$ output is valid to V_{CC} = 1.0 V. Below this voltage the output becomes an "open circuit" and does not sink current. This means CMOS logic inputs to the Microprocessor will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage. However, in situations

where $\overline{\text{RESET}}$ must be maintained valid to $V_{CC} = 0$ V, since the NCP803/MAX803 has Open–Drain and active–low output, it typically uses a pullup resistor. With this device, RESET will most likely not maintain an active condition, but will drift to a non–active level due to the pullup resistor and the reduced sinking capability of the open–drain device. Therefore, this device is not recommended for applications where the $\overline{\text{RESET}}$ pin is required to be valid down to $V_{CC} = 0$ V.

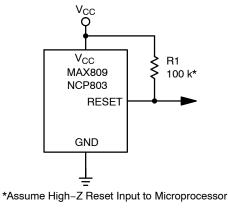


Figure 14. RESET Signal Integrity

MAX803 RESET Output Allows Use With Two Power Supplies

In numerous applications the pullup resistor place on the RESET output is connected to the supply voltage monitored by the IC. Nevertheless, a different supply voltage can also power this output and so level-shift from the monitored supply to reset the microprocessor. However, if the NCP803/MAX803's supply goes blew 1 V, the RESET output ability to sink current will decrease and the result is a high state on the pin even though the supply's IC is under the threshold level. This occurs at a V_{CC} level that depends on the R_{pullup} value and the voltage which is connected.

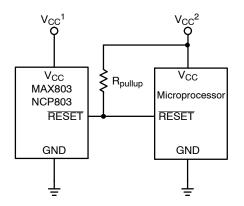


Figure 15. MAX803 RESET Output with Two Supplies

ORDERING, MARKING AND THRESHOLD INFORMATION

Part Number	Vth** (V)	Time out*** (ms)	Description	Marking	Package	Shipping †
NCV803SQ308D2T1G*	3.08	20–66	Open Drain RESET	CY	SC70–3 (Pb–Free)	3000 / Tape & Reel

DISCONTINUED (Note 7)

MAX803SQ120T1G	1.20	140–460	Open Drain RESET	ZV	SC70–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ263T1G	2.63	140–460	Open Drain RESET	SX	SC70–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ293D1T1G	2.93	1–3.3	Open Drain RESET	YA	SC70–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ293D2T1G	2.93	20–66	Open Drain RESET	YB	SC70–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ293D3T1G	2.93	100–330	Open Drain RESET	YC	SC70–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ293T1G	2.93	140–460	Open Drain RESET	ZW	SC70–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ308D2T1G	3.08	20-66	Open Drain RESET	SY	SC70–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ308T1G	3.08	140-460	Open Drain RESET	ZX	SC70–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ438T1G	4.38	140–460	Open Drain RESET	ZY	SC70–3 (Pb–Free)	3000 / Tape & Reel
NCV803SQ308T1G*	3.08	140–460	Open Drain RESET	ZA	SC70–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN120T1G	1.20	140–460	Open Drain RESET	SSW	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN160T1G	1.60	140–460	Open Drain RESET	SCQ	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN232T1G	2.32	140-460	Open Drain RESET	SQR	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN263T1G	2.63	140-460	Open Drain RESET	SQC	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN293D1T1G	2.93	1–3.3	Open Drain RESET	SSX	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN293D2T1G	2.93	20–66	Open Drain RESET	SSY	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN293D3T1G	2.93	100–330	Open Drain RESET	SSZ	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN293T1G	2.93	140–460	Open Drain RESET	SQD	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN293T3G	2.93	140–460	Open Drain RESET	SQD	SOT23–3 (Pb–Free)	10000 / Tape & Reel
NCP803SN308T1G	3.08	140–460	Open Drain RESET	SQE	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN463T1G	4.63	140–460	Open Drain RESET	SQG	SOT23–3 (Pb–Free)	3000 / Tape & Reel
NCP803SN400T1G	4.00	140–460	Open Drain RESET	RAD	SOT23–3 (Pb–Free)	3000 / Tape & Reel

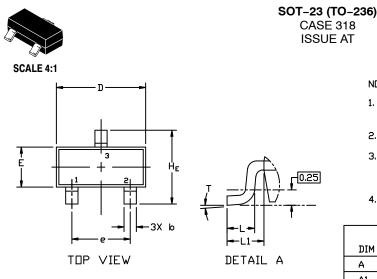
ORDERING, MARKING AND THRESHOLD INFORMATION

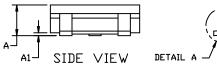
Part Number	· Vth** (V)	Time out*** (ms)	Description	Marking	Package	Shipping [†]

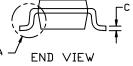
DISCONTINUED (Note 7)

NCP803SN438T1G	4.38	140–460	Open Drain RESET	SQF	SOT23–3 (Pb–Free)	3000 / Tape & Reel
MAX803SQ463T1G	4.63	140–460	Open Drain RESET	ZZ	SC70–3 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

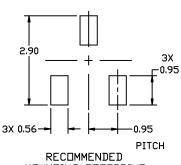

Capable.


**Contact your onsemi sales representative for other threshold voltage options.


***Contact your **onsemi** sales representative for timeout options availability for other threshold voltage options.

7. DISCONTINUED: These devices are not recommended for new design. Please contact your onsemi representative for information. The most current information on these devices may be available on www.onsemi.com.

PACKAGE DIMENSIONS



DATE 01 MAR 2023

NDTES:

- DIMENSIONING AND TOLERANCING PER 1. ASME Y14.5M,1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. З.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 4.

	MILLIMETERS INCHES					
DIM	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
ю	0.37	0.44	0.50	0.015	0.017	0.020
с	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
Η _E	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10*	0*		10*

MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC **MARKING DIAGRAM***

XXX = Specific Device Code

- = Date Code Μ
- = Pb-Free Package -

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

ж

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	I	
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE	2. CATHODE	2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE	3. ANODE	3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	I PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE	2. ANODE	2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE	3. CATHODE	3. ANODE	3. CATHODE-ANODE	3. GATE
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
2. SOURCE	2. OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3. DRAIN	3. INPUT	3. CATHODE	3. SOURCE	3. GATE	3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

onsemi

SC-70 (SOT-323) **CASE 419** ISSUE R DATE 11 OCT 2022 SCALE 4:1 NDTES: Π DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982. 1. CONTROLLING DIMENSION: INCH 2. MILLIMETERS INCHES Η_E MIN. MIN. NDM. MAX. DIM NDM MAX А 0.80 0.90 1.00 0.032 0.035 0.040 0.004 A1 0.00 0.05 0.10 0.000 0.002 0.70 REF 0.028 BSC Α2 b b 0.30 0.35 0.40 0.012 0.014 0.016 e 0.007 0.010 0.10 0.18 0.25 0.004 С TOP VIEW D 0.080 0.087 1.80 2.00 2.20 0.071 E 1.15 1.24 1.35 0.045 0.049 0.053 e 1.20 1.30 1.40 0.047 0.051 0.055 0.65 BSC e1 0.026 BSC 0.05 (0.002) A2 L 0.20 0.38 0.56 0.008 0.015 0.022 Δ1 2.00 0.079 SIDE VIEW HE 2.10 2.40 0.083 0.095 END VIEW -0.65 [0.025] 0.65 [0.025]-1.90 [0.075] GENERIC **MARKING DIAGRAM** 0.90 [0.035] XX M= -0.70 [0.028] For additional information on our Pb-Free strategy and soldering details, please download the DN Seniconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. SOLDERING FOOTPRINT XX = Specific Device Code = Date Code М = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. STYLE 1: CANCELLED STYLE 2: STYLE 3: STYLE 4: STYLE 5: PIN 1. ANODE 2. N.C. PIN 1. BASE PIN 1. CATHODE 2. CATHODE PIN 1. ANODE 2. EMITTER 2. ANODE 3. CATHODE 3. COLLECTOR 3. ANODE 3. CATHODE STYLE 6: STYLE 7: STYLE 9: STYLE 10: STYLE 11: STYLE 8: PIN 1. EMITTER PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. CATHODE PIN 1. BASE PIN 1. GATE PIN 1. CATHODE 2. EMITTER 2. SOURCE BASE 2. ANODE 2. 3. COLLECTOR 3. COLLECTOR 3. DRAIN 3. CATHODE-ANODE 3. ANODE-CATHODE 3. CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: <u>www.onsemi.com/design/resources/technical-documentation</u> onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.