

NCV21802DMR2G Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	NCV21802DMR2G-DG
Manufacturer	onsemi
Manufacturer Product Number	NCV21802DMR2G
Description	IC OPAMP GP 2 CIRCUIT 8MSOP
Detailed Description	General Purpose Amplifier 2 Circuit 8-MSOP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NCV21802DMR2G	onsemi
Series:	Product Status:
Zero-Drift	Active
Amplifier Type:	Number of Circuits:
General Purpose	2
Output Type:	Slew Rate:
	0.7V/µs
Gain Bandwidth Product:	Current - Input Bias:
1.5 MHz	60 pA
Voltage - Input Offset:	Current - Supply:
2 μV	
Current - Output / Channel:	Voltage - Supply Span (Min):
38 mA	1.8 V
Voltage - Supply Span (Max):	Operating Temperature:
5.5 V	-40°C ~ 150°C (TA)
Grade:	Qualification:
Automotive	AEC-Q100
Mounting Type:	Package / Case:
Surface Mount	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package:	Base Product Number:
8-MSOP	NCV21802

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.33.0001	

onsemi

Precision Operational Amplifier, 10 μV, Zero-Drift, 1.6 V to 5.5 V Supply, 1.5 MHz

NCS21801, NCS21802, NCS21803, NCS21804

The NCS21801, NCS21802, NCS21803, and NCS21804 are precision op amps featuring low input offset voltage and low offset drift over time and temperature. The common mode voltage range extends 100 mV beyond the supply rails, which makes it suitable for both high-side and low-side current sensing applications.

The NCS2180x is available in single, dual, and quad channel configurations. All versions are specified for operation from -40° C to $+125^{\circ}$ C. NCV prefix parts are automotive grade 1 qualified and offer performance over the extended temperature range from -40° C to $+150^{\circ}$ C.

Features

- Input Offset Voltage: ±10 µV max
- Offset Voltage Drift Over Temperature: ±5 nV/°C Typical
- Common Mode Input Voltage Range: $V_{SS} 0.1$ V to $V_{DD} + 0.1$ V
- Supply Voltage Range: 1.8 V to 5.5 V
- Extended Supply Voltage Range: 1.6 V to 5.5 V for $T_A = 0^{\circ}C$ to 85°C
- Unity Gain Bandwidth: 1.5 MHz
- Quiescent Consumption: 100 µA Max per Channel
- Enable Function Available on NCS21803
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High-Side Current Sensing
- Low-Side Current Sensing
- Difference Amplifier
- Instrumentation Amplifier
- Power Management
- Automotive

SC-88A / SC70-5 CASE 419A-02

TSOP-5 / SOT23-5 CASE 483

SC-88 / SC70-6 CASE 419B-02

UDFN8 CASE 517AW

Micro8 CASE 846A-02

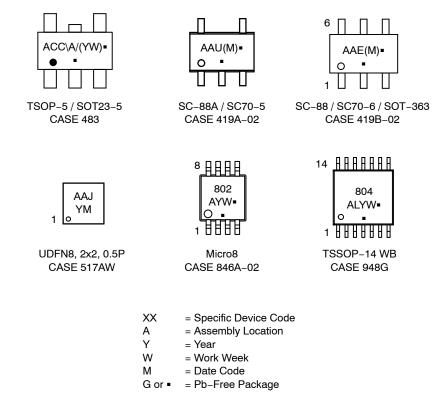
TSSOP-14 WB CASE 948G

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.

PIN CONNECTIONS

See pin connections on page 3 of this data sheet.


ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

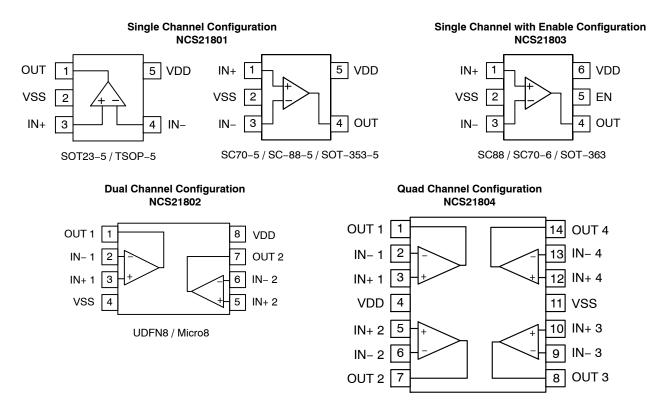
NCV21802DMR2G onsemi IC OPAMP GP 2 CIRCUIT 8MSOP

NCS21801, NCS21802, NCS21803, NCS21804

DEVICE MARKING INFORMATION

(Note: Microdot may be in either location)

ORDERING INFORMATION


Channels	Enable	Package	Part Number	Marking	Shipping
INDUSTRIAL A	AND CONSUMER	1			
Single	No	SOT23-5 / TSOP-5	NCS21801SN2T1G	ACC	3000 / Tape & Reel
		SC70-5 / SC-88-5 / SOT-353-5	NCS21801SQ3T2G	AAU	
	Yes	SC-88 / SC70-6 / SOT-363	NCS21803SQT2G	AAE	
Dual	No	UDFN-8	NCS21802MUTBG	AAJ	3000 / Tape & Reel
		Micro8	NCS21802DMR2G	802	4000 / Tape & Reel
Quad	No	TSSOP-14	NCS21804DTBR2G	804	2500 / Tape & Reel

AUTOMOTIVE QUALIFIED

Single	No	SOT23-5 / TSOP-5	NCV21801SN2T1G	ACC	3000 / Tape & Reel
		SC70-5 / SC-88-5 / SOT-353-5	NCV21801SQ3T2G	AAU	
Dual	No	Micro8	NCV21802DMR2G	802	4000 / Tape & Reel
Quad	No	TSSOP-14	NCV21804DTBR2G	804	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN CONNECTIONS

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Rating	Unit
Supply Voltage (V _{DD} – V _{SS}) (Note 1)	V _S	–0.3 to 6	V
Input Voltage (Note 2)	$V_{IN+,}V_{IN-,}V_{EN}$	$(V_{SS} - 0.3)$ to $(V_{DD} + 0.3)$	V
Differential Input Voltage	$V_{IN+,}V_{IN-}$	\pm (V _{DD} – V _{SS} + 0.3)	V
Output Voltage (Note 2)	V _{OUT}	$(V_{SS} - 0.3)$ to $(V_{DD} + 0.3)$	V
Output Short Circuit Current (Note 3)	I _{OUT}	Continuous	
Input Current into Any Pin (Note 2)	I _{IN}	±10	mA
Maximum Junction Temperature	T _{J(max)}	+150	°C
Storage Temperature Range	T _{STG}	–65 to +150	°C
ESD Human Body Model (Note 4)	HBM	±2000	V
Charged Device Model (Note 4)	CDM	±1000	V
Latch-up Current (Note 5)		100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe operating parameters

2. Terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current limited to ±10 mA or less. Output terminals should not be driven by external sources.

3. Short circuits to either rail can cause an increase in the junction temperature. The total power dissipation must be limited to prevent the junction temperature from exceeding the 150°C limit.

4. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard JS-001-2017 (AEC-Q100-002) ESD Charged Device Model tested per JEDEC standard JS-002-2014 (AEC-Q100-011)

5. Latch-up Current tested per JEDEC standard: JESD78E.

θ_{JA} Ψ_{JT} Ψ_{JB} Junction-to-Ambient Junction-to-Case Top Junction-to-Board Thermal Resistance **Thermal Characteristic Thermal Characteristic** Unit Package TSOP-5 / SOT23-5 188 26 38 SC70-5 / SC-88-5 / SOT-353-5 241 64 46 SC-88 / SC70-6 / SOT-363 230 45 60 °C/W UDFN8 105 10 51 Micro8 / MSOP-8 105 24 96 TSSOP-14 86 9 53

THERMAL CHARACTERISTICS (Notes 6, 7)

6. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe operating parameters

7. Mounted on a JESD51-7 thermal board, 2S2P, 1 in² copper spreader area, 1 oz signal plane thickness

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Conditions	Min	Max	Unit
Ambient Temperature	T _A	NCS prefix	-40 125		°C
		NCV prefix	-40	150 (Note 8)	
Common Mode Input Voltage	V _{CM}	Full temperature range	V _{SS} – 0.1	V _{DD} + 0.1	V
Supply Voltage (V _{DD} – V _{SS})	VS	$T_A = 0$ to $85^{\circ}C$	1.6	5.5	V
		Full temperature range	1.8	5.5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

 Operation up to T_A = 150°C is permitted, provided the total power dissipation is limited to prevent the junction temperature from exceeding the 150°C absolute maximum limit.

ELECTRICAL CHARACTERISTICS At $T_A = +25^{\circ}$ C, Vs = 1.8 V to 5.5 V, and $V_{CM} = V_{OUT}$ = mid-supply, unless otherwise noted.
Boldface limits apply over the specified temperature range, unless otherwise noted, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Temp (°C)	Min	Тур	Max	Unit
INPUT							
Input Offset Voltage	V _{OS}	V _S = 3.3 V	25		±2	±10	μV
Input Offset Voltage Drift vs.	dV _{OS} /dT	V _S = 1.8 V to 5.5 V	-40 to 125		±5	± 75	nV/∘C
Temperature			-40 to 150		±5	± 75	
Common Mode Rejection Ratio	CMRR	V _S = 1.8 V,	25	106	131		dB
		V_{CM} = V_{SS} – 0.1 V to V_{DD} + 0.1 V	-40 to 125	100			
			-40 to 150	100			
		V _S = 3.3 V,	25	113	134		
		V_{CM} = V_{SS} – 0.1 V to V_{DD} + 0.1 V	-40 to 125	110			
			-40 to 150	110			
		V _S = 5.5 V,	25	111	137		
		$V_{CM} = V_{SS} - 0.1 \text{ V to } V_{DD} + 0.1 \text{ V}$	-40 to 125	108			1
			-40 to 150	108			
Input Bias Current (Note 9)	I _{IB}		25		±60	±200	pА
			-40 to 125			±600	
			-40 to 150			±5000	
Input Offset Current	I _{OS}		25		±60	±300	pА
(Note 9)			-40 to 125			± 400	
			-40 to 150			±2500	
Input Capacitance	C _{IN}	Differential	25		5		pF
		Common mode	25		5		
ENABLE (Note 10)							
Input Voltage Low Threshold	V _{EN-L}	Shutdown	-40 to 125			V _{SS} + 0.5	V
Input Voltage High Threshold	V _{EN-H}	Enabled	-40 to 125	V _{SS} + 1.3			V
Input Leakage Current	I _{EN}		25		1	100	nA
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	A _{VOL}	V _S = 1.8 V	25	108	133		dB

Open Loop Voltage Gain	A _{VOL}	V _S = 1.8 V	25	108	133	dB
			-40 to 125	106		
			-40 to 150	106		
		V _S = 3.3 V, 5.5 V	25	120	143	
			-40 to 125	110		
			-40 to 150	110		

Guaranteed by characterization and/or design.
The enable function is available on NCS21803 only. The EN pin must be connected to a logic low or logic high voltage.
Shutdown Time (t_{OFF}) and Enable Time (t_{ON}) are defined as the time between the 50% point of the signal applied to the EN pin and the point at which the output voltage reaches within 10% of its final value.

ELECTRICAL CHARACTERISTICS At $T_A = +25^{\circ}C$, Vs = 1.8 V to 5.5 V, and $V_{CM} = V_{OUT} = mid$ -supply, unless otherwise noted.
Boldface limits apply over the specified temperature range, unless otherwise noted, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Temp (°C)	Min	Тур	Max	Unit
OUTPUT CHARACTERISTICS							
Output Voltage High,	V _{DD} – V _{OH}	I _{OUT} = 30 μA	25		1	5	mV
Referenced from VDD Supply Rail			-40 to 125			10	
			-40 to 150			10	
		V _S = 3.3 V, I _{OUT} = 3 mA	25		55	100	
			-40 to 125			125	
			-40 to 150			125	
Output Voltage Low,	V _{OL} –	I _{OUT} = 30 μA	25		1	5	mV
Referenced to VSS Supply Rail	V _{SS}		-40 to 125			10	
			-40 to 150			10	
		V _S = 3.3 V, I _{OUT} = 3 mA	25		55	100	
			-40 to 125			125	
			-40 to 150			125	
Output Current Sourcing	Ι _Ο	V _S = 1.8 V	25		24		mA
Capability		V _S = 3.3 V	25		29		
		V _S = 5.5 V	25		32		
Output Current Sinking	Ι _Ο	V _S = 1.8 V	25		28		1
Capability		V _S = 3.3 V	25		32		
		V _S = 5.5 V	25		38		
Capacitive Load Capability	CL	$ A_V = -1, V_{IN} = 100 \text{ mVpp step} \\ A_V = 1, V_{IN} = 100 \text{ mVpp step} $	25		400 125		pF
DYNAMIC RESPONSE							
Unity Gain Bandwidth	BW	C _L = 20 pF	25		1.5		MHz
Gain Margin	A _M	C _L = 20 pF	25		6		dB
Phase Margin	Φ_{M}	C _L = 20 pF	25		50		0
Slew Rate	SR		25		0.7		V/μs
Settling Time	t _s	0.1%, A _V = 1	25		20		μs
Overload Recovery Time	t _{OR}	V _{IN} * GAIN > V _S	25		200		μs
Channel Separation		NCS21802, NCS21804, f = 10 kHz	25		90		dB
EMI Rejection Ratio	EMIRR		25		See Fig. 26		dB
NOISE	•	•	•		•		•
Voltage Noise Density	e _N	V _S = 3.3, f _{in} = 1 kHz	25		42		nV/√Hz

Voltage Noise Density	e _N	V _S = 3.3, f _{in} = 1 kHz	25	42	nV/√Hz
Voltage Noise, Peak-to-Peak	e _{P-P}	f _{in} = 0.1 Hz to 10 Hz	25	400	nV _{PP}
Current Noise Density	i _N	f _{in} = 1 kHZ	25	445	fA/√Hz

Guaranteed by characterization and/or design.
The enable function is available on NCS21803 only. The EN pin must be connected to a logic low or logic high voltage.
Shutdown Time (t_{OFF}) and Enable Time (t_{ON}) are defined as the time between the 50% point of the signal applied to the EN pin and the point at which the output voltage reaches within 10% of its final value.

ELECTRICAL CHARACTERISTICS At $T_A = +25^{\circ}$ C, Vs = 1.8 V to 5.5 V, and $V_{CM} = V_{OUT}$ = mid-supply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, unless otherwise noted, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Temp (°C)	Min	Тур	Max	Unit
POWER SUPPLY		• •					
Quiescent Current	lQ	NCS21801, NCS2803,	25		75	105	μA
		no load	-40 to 125			130	
			-40 to 150			200	
		NCS21802, NCS21804,	25		75	100	μΑ
		per channel, no load	-40 to 125			125	
			-40 to 150			150	
Quiescent Current in Shutdown (Notes 9, 10)	I _{QSD} F	Per channel	25		5	50	nA
			-40 to 85			75	
			-40 to 125			200	
Power Supply Rejection Ratio	PSRR	V _S = 1.8 V to 5.5 V	25	115	140		dB
			-40 to 125	110			
			-40 to 150	110			
Power Up Time		NCS21801, NCS21803	25		50		μs
		NCS21802, NCS21804	25		40		
Enable Time (Note 10, 11)	t _{ON}		25		50		μs
Shutdown Time (Note 10, 11)	t _{OFF}		25		3		μs

9. Guaranteed by characterization and/or design.

10. The enable function is available on NCS21803 only. The EN pin must be connected to a logic low or logic high voltage.

11. Shutdown Time (t_{OFF}) and Enable Time (t_{ON}) are defined as the time between the 50% point of the signal applied to the EN pin and the point at which the output voltage reaches within 10% of its final value.

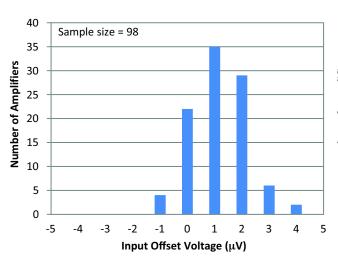
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS At $T_A = +25^{\circ}C$, $V_S = 1.6$ V, and $V_{CM} = V_{OUT} = mid-supply$, unless otherwise noted. Boldface
limits apply over the specified temperature range, $T_A = 0^{\circ}C$ to 85 $^{\circ}C$, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Temp (°C)	Min	Тур	Мах	Unit
INPUT							
Input Offset Voltage	V _{OS}		25		±3	±13	μV
Input Offset Voltage Drift vs. Temperature	dV _{OS} /dT		0 to 85		±5	±75	nV/°C
Common Mode Rejection Ratio	CMRR	V_{CM} = V_{SS} – 0.1 V to V_{DD} + 0.1 V	25	96	123		dB
			0 to 85	94			
Input Bias Current	I _{IB}		25		±30	±160	pА
(Note 12)			0 to 85			±250	
Input Offset Current (Note 12)	I _{OS}		25		±36	±200	pА
			0 to 85			± 250	
Input Capacitance	C _{IN}	Differential	25		5		pF
		Common mode	25		5		
ENABLE (Note 14)							
Input Voltage Low Threshold	V _{EN-L}	Shutdown	0 to 85			V _{SS} + 0.5	V
Input Voltage High Threshold	V _{EN-H}	Enabled	0 to 85	V _{SS} + 1.3			V
Input Leakage Current	I _{EN}		25		1	100	nA
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	A _{VOL}		25	106	128		dB
			0 to 85	104			
Output Voltage High,	V _{DD} –	l _{OUT} = 30 μA	25		1	5	mV
Referenced from V _{DD} Supply Rail	V _{OH}		0 to 85			10	
		I _{OUT} = 3 mA	25		85	130	
			0 to 85			150	
Output Voltage Low,	V _{OL} –	I _{OUT} = 30 μA	25		1	5	mV
Referenced to V _{SS} Supply Rail	V _{SS}		0 to 85			10	
		I _{OUT} = 3 mA	25		75	130	
			0 to 85			150	
Output Current Sourcing Capability	۱ _٥		25		15		mA
Output Current Sinking Capability	۱ _٥		25		21		
Capacitive Load Capability	CL	$ A_V = -1, V_{IN} = 100 \text{mVpp step} \\ A_V = 1, V_{IN} = 100 \text{mVpp step} $	25		400 125		pF
DYNAMIC RESPONSE							
				T	r	1	

Unity Gain Bandwidth	BW	C _L = 20 pF	25	1.4	MHz
Gain Margin	A _M	C _L = 20 pF	25	6	dB
Phase Margin	Φ_{M}	C _L = 20 pF	25	50	0
Slew Rate	SR		25	0.7	V/μs

12. Guaranteed by design and/or characterization.


13. The enable function is available on NCS21803 only. The EN pin must be connected to a logic low or logic high voltage.
14. Shutdown Time (t_{OFF}) and Enable Time (t_{ON}) are defined as the time between the 50% point of the signal applied to the EN pin and the point at which the output voltage reaches within 10% of its final value.

ELECTRICAL CHARACTERISTICS At $T_A = +25^{\circ}C$, $V_S = 1.6$ V, and $V_{CM} = V_{OUT} = mid-supply$, unless otherwise noted. Boldface
limits apply over the specified temperature range, T_A = 0°C to 85°C, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Temp (°C)	Min	Тур	Max	Unit
DYNAMIC RESPONSE			•				
Settling Time	t _s	0.1%, A _V = 1	25		20		μs
Overload Recovery Time	t _{OR}	V _{IN} * GAIN > V _S	25		200		μs
Channel Separation		NCS21802, NCS21804, f = 10 kHz	25		90		dB
EMI Rejection Ratio	EMIRR		25		See Fig. 26		dB
NOISE	•	•	•		•		
Voltage Noise Density	e _N	f _{in} = 1 kHz	25		53		nV/√Hz
Voltage Noise, Peak-to-Peak	e _{P-P}	f _{in} = 0.1 Hz to 10 Hz	25		400		nV _{PP}
Current Noise Density	i _N	f _{in} = 1 kHz	25		450		fA/√Hz
POWER SUPPLY			-				
Quiescent Current	Ι _Q	NCS21801, NCS21803, no load NCS21802, NCS21804, per channel, no load	25		70	95	μΑ
			0 to 85			110	
			25		65	90	
			0 to 85			105	
Quiescent Current in	I _{QSD}	Per channel	25		5	50	nA
Shutdown (Notes 12, 13)			0 to 85			75	
Power Supply Rejection Ratio	PSRR	$V_{\rm S}$ = 1.6 V to 5.5 V	25	115	135		dB
			0 to 85	110			
Power Up Time		NCS21801, NCS21803	25		75		μs
		NCS21802, NCS21804	25		40		
Enable Time (Notes 13, 14)	t _{ON}		25		75		μs
Shutdown Time (Notes 13, 14)	t _{OFF}		25		5		μs

12. Guaranteed by design and/or characterization.
13. The enable function is available on NCS21803 only. The EN pin must be connected to a logic low or logic high voltage.
14. Shutdown Time (t_{OFF}) and Enable Time (t_{ON}) are defined as the time between the 50% point of the signal applied to the EN pin and the point at which the output voltage reaches within 10% of its final value.

TYPICAL CHARACTERISTICS

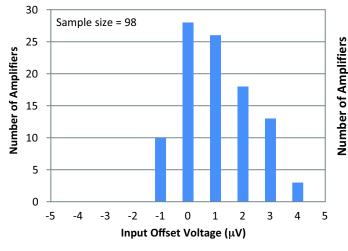


Figure 3. Input Offset Voltage Distribution with 1.6 V Supply

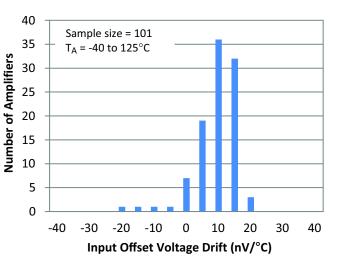


Figure 2. Input Offset Voltage Drift Distribution with 3.3 V Supply

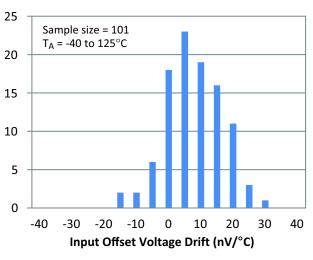
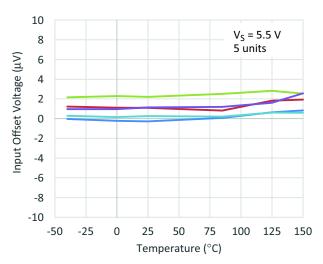
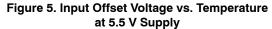




Figure 4. Input Offset Voltage Drift Distribution with 1.6 V Supply

TYPICAL CHARACTERISTICS

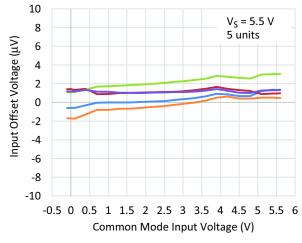


Figure 7. Input Offset Voltage vs. Common Mode Voltage at 5.5 V Supply

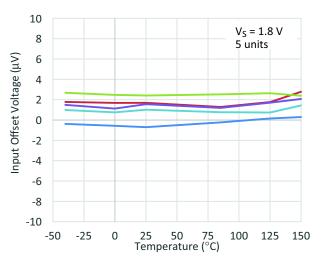
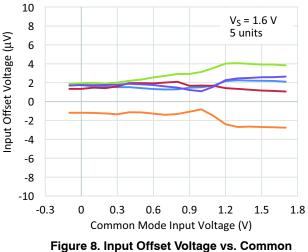



Figure 6. Input Offset Voltage vs. Temperature at 1.8 V Supply

Mode Voltage at 1.6 V Supply

TYPICAL CHARACTERISTICS

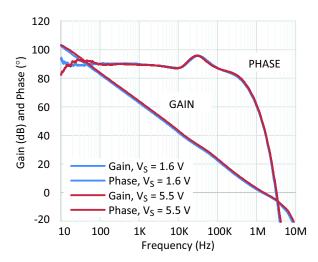


Figure 9. Open Loop Gain and Phase vs. Frequency

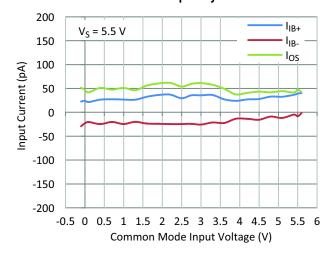


Figure 11. Input Bias Current and Input Offset Current vs. Common Mode Input Voltage

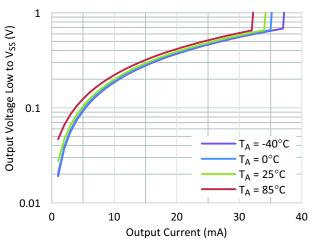


Figure 13. Output Voltage Low vs. Output Current at 5.5 V Supply

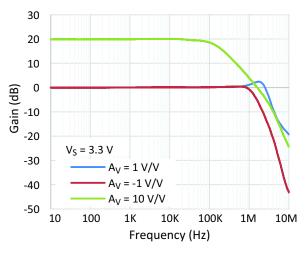


Figure 10. Closed Loop Gain vs. Frequency

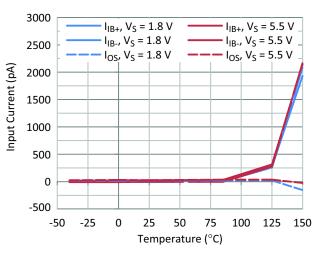


Figure 12. Input Bias Current and Input Offset Current vs. Temperature

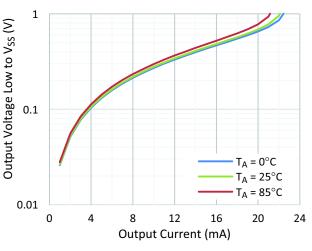
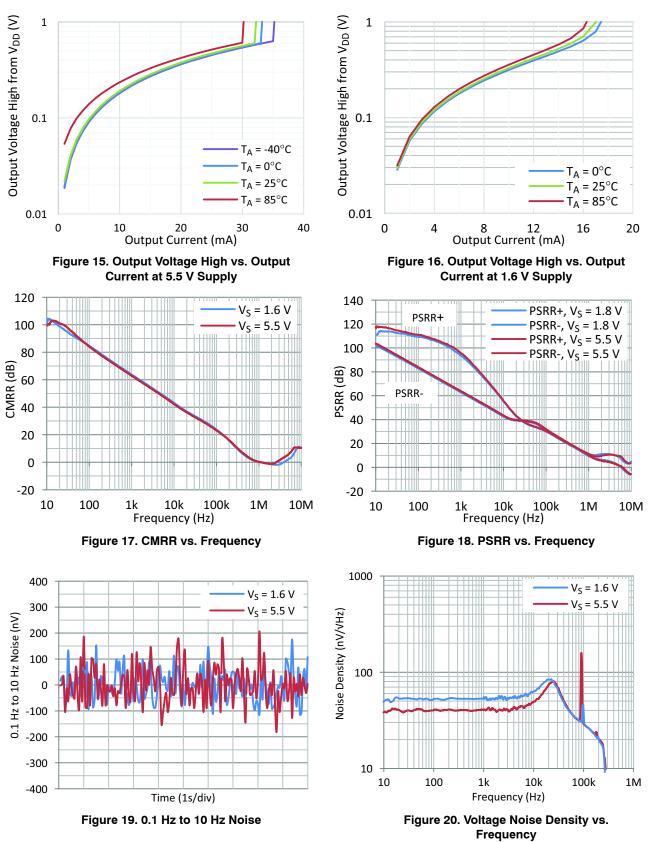
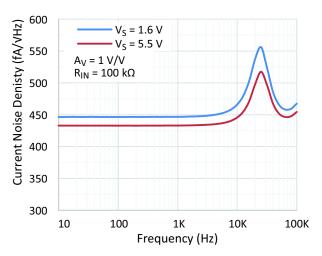



Figure 14. Output Voltage Low vs. Output Current at 1.6 V Supply


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Typical Performance at T_A = 25°C, V_{CM} = mid-supply, C_L = 20 pF, R_L = 10 k Ω to mid-supply, unless otherwise noted

1

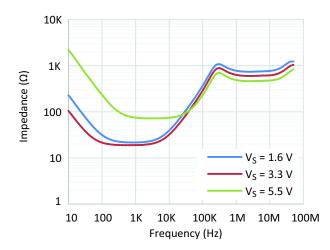


Figure 23. Open Loop Output Impedance vs. Frequency

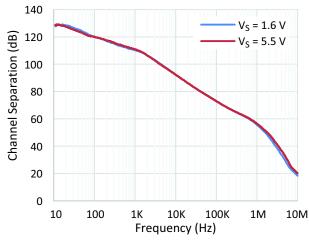
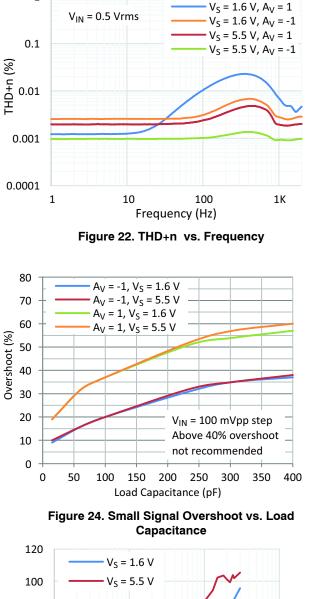
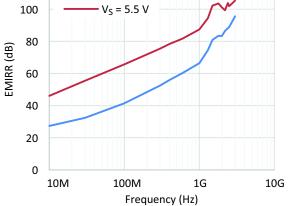
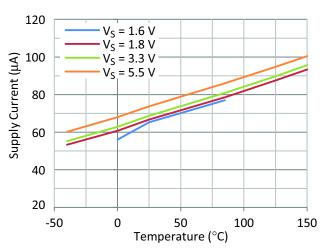
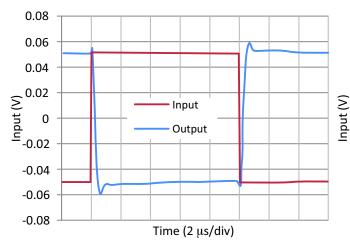
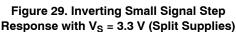
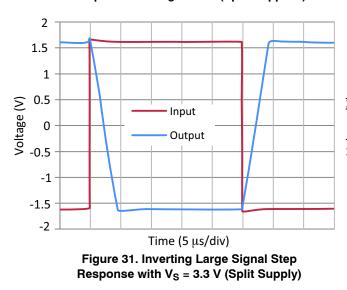



Figure 25. Channel Separation vs. Frequency


Figure 26. EMIRR vs. Frequency


TYPICAL CHARACTERISTICS

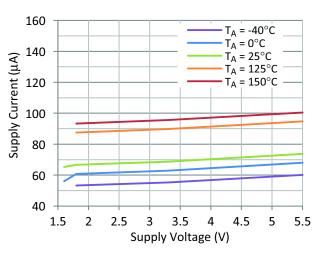


Figure 28. Quiescent Current Per Channel vs. Supply Voltage

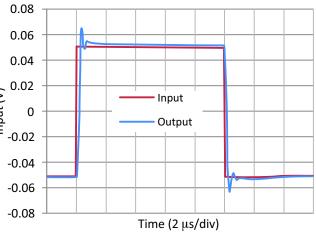
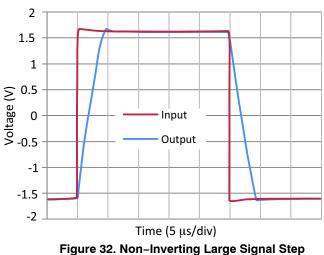
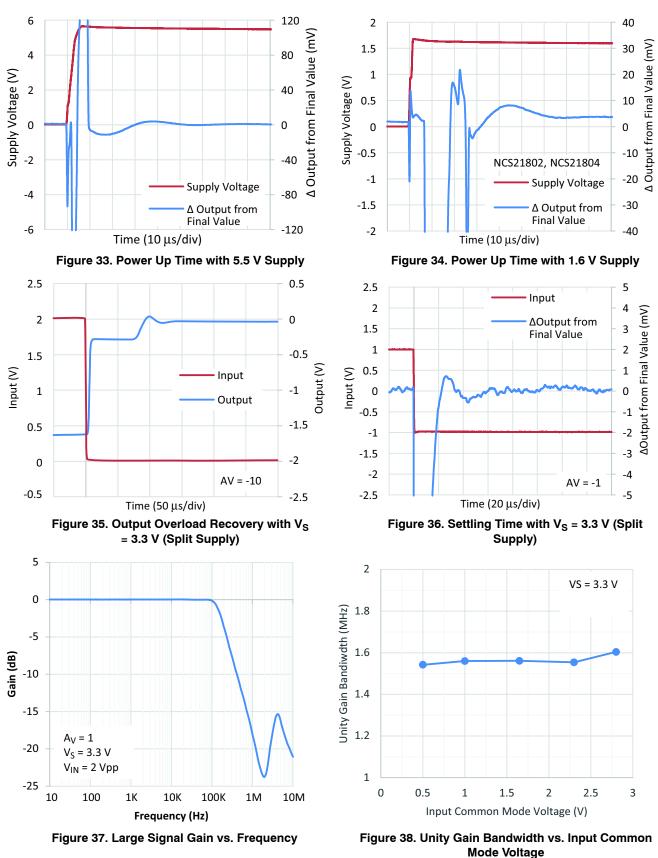




Figure 30. Non–Inverting Small Signal Step Response with V_S = 3.3 V (Split Supplies)

Response with $V_S = 3.3 V$ (Split Supply)

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

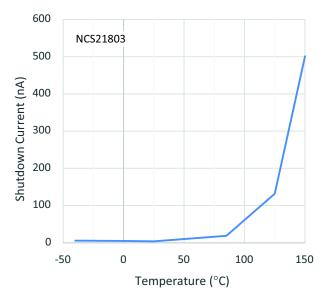
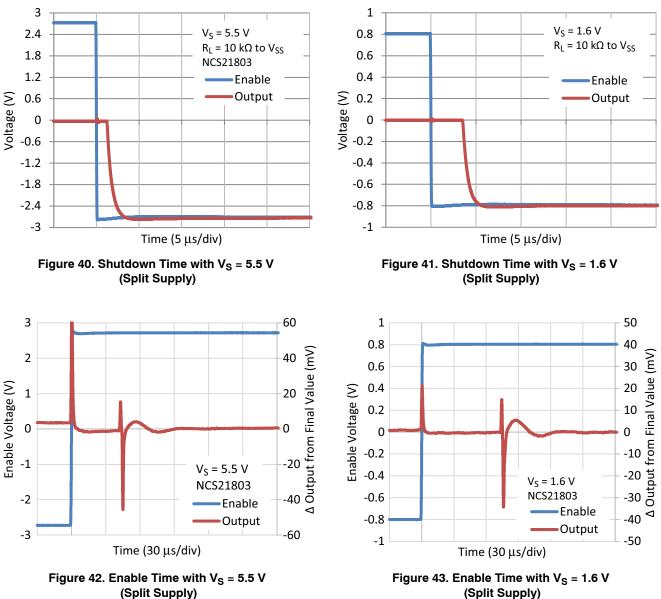



Figure 39. Shutdown Current vs. Temperature

TYPICAL CHARACTERISTICS

APPLICATIONS INFORMATION

The NCS21801, NCS21802, NCS21803, and NCS21804 precision amplifiers feature low input offset voltage and zero-drift over temperature. The input common mode voltage range extends 100 mV beyond the rails, allowing for measurements at ground or the supply voltage. These characteristics make the NCS21801 series well-suited for applications such as current sensing and sensor interface. The NCS21803 additionally features an enable pin that allows the amplifier to enter shutdown mode to reduce current consumption in low power applications.

Architecture

The low input offset voltage and zero-drift characteristics of amplifiers in the NCS21801 series is achieved through the chopper-stabilized architecture. Unlike the classical chopper architecture, the chopper-stabilized architecture has two signal paths to take advantage of both precision and speed.

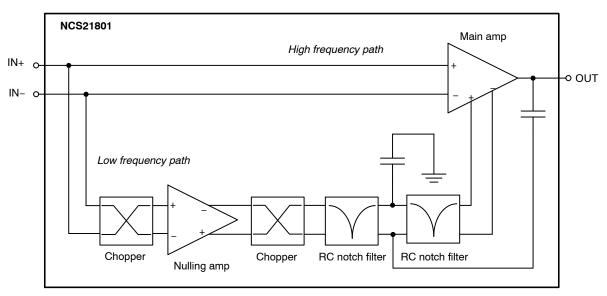


Figure 44. Simplified Schematic of the Chopper-stabilized Amplifier Architecture

In Figure 44, the lower signal path is where the chopper samples the input offset voltage, which is then used to correct the offset at the output. The offset correction occurs at a frequency of 100 kHz. Due to this periodic sampling, the chopper-stabilized architecture is optimized for best performance at frequencies up to the related Nyquist frequency (1/2 of the offset correction frequency). As the signal frequency exceeds the Nyquist frequency, 50 kHz, aliasing may occur at the output. This is an inherent limitation of all chopper and chopper-stabilized architectures. Nevertheless, the NCS2180x is designed to minimize aliasing beyond the Nyquist frequency. ON Semiconductor's patented approach utilizes two cascaded, symmetrical, RC notch filters tuned to the chopper frequency and its fifth harmonic to reduce aliasing effects.

The feed-forward path, which is shown as the upper signal path of the block diagram in Figure 44, is the high speed signal path that extends the gain bandwidth to 1.5 MHz. Not only does this help retain high frequency components of the input signal, but it also improves the loop gain at low frequencies. This is especially useful for low-side current sensing and sensor interface applications where the signal is low frequency and the differential voltage is relatively small.

Both internal amplifiers have specialized circuitry to maintain nearly constant bandwidth, noise, and slew rate over the entire common mode voltage range. This also improves the overall input offset voltage, PSRR, and CMRR performance, while significantly reducing the THD+noise level. These characteristics are very useful in signal processing.

Input Offset Voltage

Input offset voltage is an intrinsic op amp characteristic that arises from mismatches in the IN+ and IN- paths. Since the NCS2180x series amplifiers have such low input offset voltage to begin with, external factors can have a non-trivial contribution to the effective input offset voltage. Conditions created by the physical environment can create package stress, thereby influencing the input offset voltage. These factors include air flow and PCB construction. Taking these factors into consideration, the input offset voltage performance should be validated in the application environment.

EMIRR

The NCS21801 series has built–in input filters to reduce high frequency EMI frequency signals before they enter the amplifier. Under normal circumstances, P–N junctions within the silicon can rectify these high frequency signals, and the effect can be seen as a DC offset at the output. Since this added offset can have a noticeable effect on high precision measurements, EMI rejection ratio (EMIRR) can be used to quantify the robustness of an amplifier to these signals.

Enable Function

The enable pin on NCS21803 allows the user to put the amplifier into shutdown mode when it is not is use. Setting EN to the logic low level reduces the current consumption down to less than 300 nA, which is useful for portable and

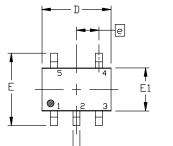
battery-powered applications. The output becomes high impedance. Setting the EN pin to logic high enables the output again, with the output reaching the final value ($\pm 1\%$) according the specified enable time. A floating EN pin results in an indeterminate output state.

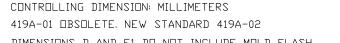
Layout Recommendations

Bypass capacitors of $0.1 \,\mu\text{F}$ to ground should be placed as close as possible to the supply pins.

The UDFN8 package has an exposed leadframe die pad on the underside of the package. This pad should be soldered to the PCB, as shown in the recommended soldering footprint in the Package Dimensions section of this datasheet. The center pad can be electrically connected to VSS or it may be left floating. When connected to VSS, the center pad acts as a heat sink, improving the thermal resistance of the part.

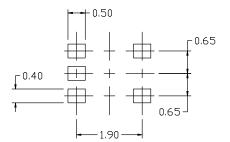
PACKAGE DIMENSIONS


SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M


NDTES: 1. DIM

2.

З.



DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.

- → 5X b (\$\$0,2@ B@)	

RECOMMENDED MOUNTING FOOTPRINT

 For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

мід	MILLIMETERS				
MIU	MIN,	NDM,	MAX.		
А	0.80	0.95	1.10		
A1			0.10		
A3	0.20 REF				
b	0.10	0.20	0.30		
С	0.10		0,25		
D	1.80	2.00	5.50		
E	2.00	2.10	5.50		
E1	1.15	1,25	1.35		
e	0.65 BSC				
L	0.10	0.15	0.30		

GENERIC MARKING

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

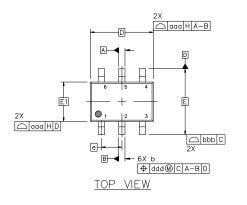
XXX = Specific Device Code

M = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

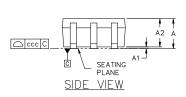
DOCUMENT NUMBER: DESCRIPTION:	98ASB42984B SC-88A (SC-70-5	Electronic vers Printed version	ions are uncontrolled excep	t when accessed directly from hen stamped "CONTROLLED (
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 1. 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	Note: Please refer to style callout. If style to out in the datasheet r datasheet pinout or p	ype is not called efer to the device
STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2	STYLE 5: PIN 1. CATHODE 2. COMMON ANOD 3. CATHODE 3 4. CATHODE 3 5. CATHODE 4	E

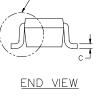
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

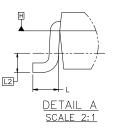


MECHANICAL CASE OUTLINE

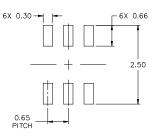
PACKAGE DIMENSIONS


SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**


DATE 18 APR 2024


NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME 1. Y14.5-2018.
- 2.
- ALL DIMENSION ARE IN MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 3. PER END.
- 4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF
- DATUMS A AND B ARE DETERMINED AT DATUM H. 5.
- DIMENSIONS & AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. 7 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION & AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.



DETAIL A

	MI	MILLIMETERS				
DIM	MIN.	NOM.	MAX.			
А			1.10			
A1	0.00		0.10			
A2	0.70	0.90	1.00			
b	0.15	0.20	0.25			
с	0.08	0.15	0.22			
D	2.00 BSC					
E	2.10 BSC					
E1		1.25 BSC				
е		0.65 BSC	;			
L	0.26	0.36	0.46			
L2		0.15 BSC				
aaa	0.15					
bbb	0.30					
ccc		0.10				
ddd		0.10				

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code Μ

GENERIC **MARKING DIAGRAM***

XXXM.

. 0

6

= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65P		PAGE 1 OF 2				
onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular							

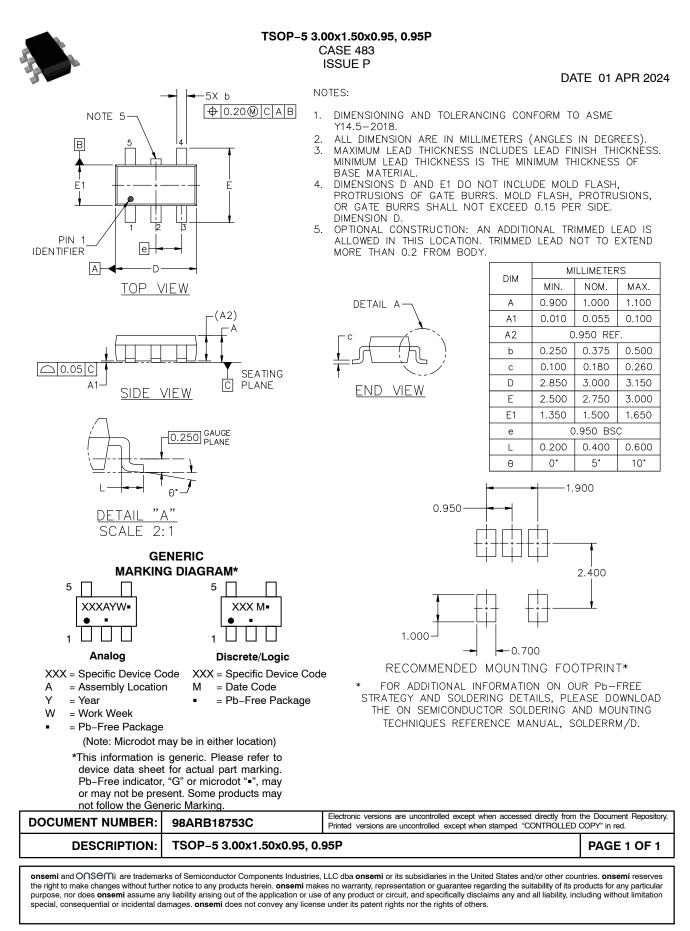
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z

DATE 18 APR 2024

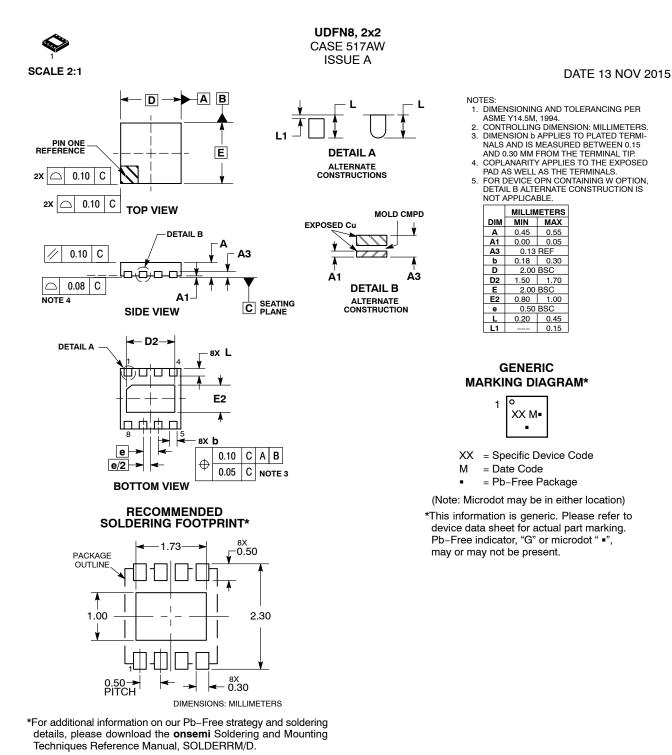
STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13:	STYLE 14:	STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE	PIN 1. VREF	PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. N/C	2. GND	2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. COLLECTOR	3. GND	3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. EMITTER	4. IOUT	4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. BASE	5. VEN	5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE	6. VCC	6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 19:	STYLE 20:	STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. I OUT	PIN 1. COLLECTOR	PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. GND	2. COLLECTOR	2. N/C	2. GND	2. CH1	2. ANODE
3. GND	3. BASE	3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. V CC	4. EMITTER	4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. V EN	5. COLLECTOR	5. N/C	5. VBUS	5. CH2	5. CATHODE
6. V REF	6. COLLECTOR	6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 25:	STYLE 26:	STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 1	PIN 1. SOURCE 1	PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. CATHODE	2. GATE 1	2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 2	3. DRAIN 2	3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. BASE 2	4. SOURCE 2	4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER	5. GATE 2	5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 1	6. DRAIN 1	6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.


DOCUMENT NUMBER:	98ASB42985B Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65P		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

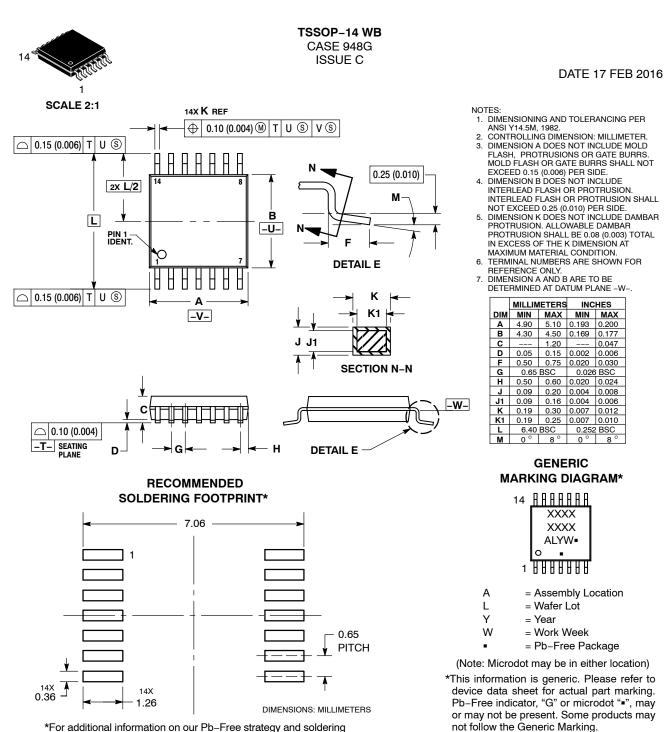
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98AON34462E **UDFN8, 2X2 DESCRIPTION:** PAGE 1 OF 1 onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi


Micro8 CASE 846A-02 ISSUE K DATE 16 JUL 2020 SCALE 2:1 NDTES: А 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. В 2. CONTROLLING DIMENSION: MILLIMETERS AAAA DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. 3 ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF Η_E MAXIMUM MATERIAL CONDITION. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION 4. $\Delta 1$ OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS Ш SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH Ш П DETAIL A OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. e DIMENSIONS D AND E ARE DETERMINED AT DATUM F. -8X b ⊕0.08 (0.003) @CBS AS 5. DATUMS A AND B ARE TO BE DETERMINED AT DATUM F. NDTE 3 A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE 6. TOP VIEW SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. DETAIL A -A MILLIMETERS -8X 0.80 8X 0.48-DIM MIN. NDM. MAX. 1.10 0.038 (0.0015) C Α 0.05 0.08 0.15 A1 C END VIEW b 0.25 0.33 0.40 5.25 SIDE VIEW 0.13 0.18 0.23 С D 2.90 3.00 3.10 Е 2.90 3.00 3.10 0.65 GENERIC 0.65 BSC PITCH e **MARKING DIAGRAM*** 4.75 4.90 5.05 HE RECOMMENDED L 0.40 0.55 0.70 8日日日日 MOUNTING FOOTPRINT XXXX AYW• 8888 XXXX = Specific Device Code = Assembly Location А Y = Year W = Work Week = Pb-Free Package STYLE 1: PIN 1. SOURCE 2. SOURCE 3. SOURCE STYLE 2: STYLE 3: PIN 1. N-SOURCE PIN 1. SOURCE 1 (Note: Microdot may be in either location) 2. GATE 1 3. SOURCE 2 2. N-GATE 3. P-SOURCE *This information is generic. Please refer to 4. GATE 5. DRAIN 4. GATE 2 5. DRAIN 2 4. P-GATE 5. P-DRAIN device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may 6. DRAIN 6. DRAIN 2 6. P-DRAIN 7. DRAIN 8. DRAIN or may not be present. Some products may 7 DRAIN 1 7 N-DRAIN 8. DRAIN 1 8. N-DRAIN not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED 0	
DESCRIPTION:	MICRO8		PAGE 1 OF 1
the right to make changes without furth purpose, nor does onsemi assume as	er notice to any products herein. onsemi making the products herein. onsemi making liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular

© Semiconductor Components Industries, LLC, 2019

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

98ASH70246A

TSSOP-14 WB

PAGE 1 OF 1

Electronic versions are uncontrolled except when accessed directly from the Document Repository.

Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.

DESCRIPTION:

DOCUMENT NUMBER:

NCV21802DMR2G onsemi IC OPAMP GP 2 CIRCUIT 8MSOP

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.