

NCV8720BMTW150TBG Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	NCV8720BMTW150TBG-DG
Manufacturer	onsemi
Manufacturer Product Number	NCV8720BMTW150TBG
Description	IC REG LINEAR 1.5V 350MA 6WDFN
Detailed Description	Linear Voltage Regulator IC Positive Fixed 1 Output 350mA 6-WDFN (2x2)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NCV8720BMTW150TBG	onsemi
Series:	Product Status:
	Active
Output Configuration:	Output Type:
Positive	Fixed
Number of Regulators:	Voltage - Input (Max):
1	5.5V
Voltage - Output (Min/Fixed):	Voltage - Output (Max):
1.5V	-
Voltage Dropout (Max):	Current - Output:
0.2V @ 350mA	350mA
PSRR:	Control Features:
52dB ~ 25dB (10Hz ~ 1MHz)	Enable
Protection Features:	Operating Temperature:
Over Current, Over Temperature, Under Voltage Lockout (UVLO)	-40°C ~ 125°C (TA)
Grade:	Qualification:
Automotive	AEC-Q100
Mounting Type:	Package / Case:
Surface Mount	6-WDFN Exposed Pad
Supplier Device Package:	Base Product Number:
6-WDFN (2x2)	NCV8720

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

CMOS Voltage Regulator, Very Low Dropout Bias Rail, 350mA

The NCV8720 is a 350 mA VLDO equipped with NMOS pass transistor and a separate bias supply voltage (V_{BIAS}). The device provides very stable, accurate output voltage with low noise suitable for space constrained, noise sensitive applications. In order to optimize performance for battery operated applications, the NCV8720 features low I_O consumption. The NCV8720 is offered in WDFN6 2 mm x 2 mm package, wettable flanks option available for Enhanced Optical Inspection.

Features

- Input Voltage Range: 0.8 V to 5.5 V
- Bias Voltage Range: 2.4 V to 5.5 V
- Fixed Output Voltage Device
- Output Voltage Range: 0.8 V to 2.1 V
- $\pm 2\%$ Accuracy over Temperature
- Ultra-Low Dropout: 110 mV typically at 350 mA
- Very Low Bias Input Current of Typ. 80 μA
- Very Low Bias Input Current in Disable Mode: Typ. 0.5 μA
- Low Noise, High PSRR
- Built-In Soft-Start with Monotonic VOUT Rise
- Stable with a 2.2 µF Ceramic Capacitor
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable; Device Temperature Grade 1: -40°C to +125°C Ambient Operating Temperature Range
- These are Pb-Free Devices

Typical Applications

- Automotive, Consumer and Industrial Equipment Point of Load Regulation
- Battery–Powered Equipment
- FPGA, DSP and Logic Power Supplies
- Switching Power Supply Post Regulation
- Cameras, DVRs, STB and Camcorders

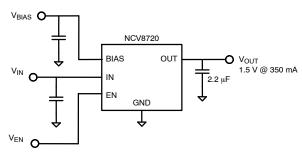
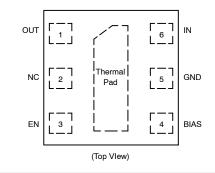


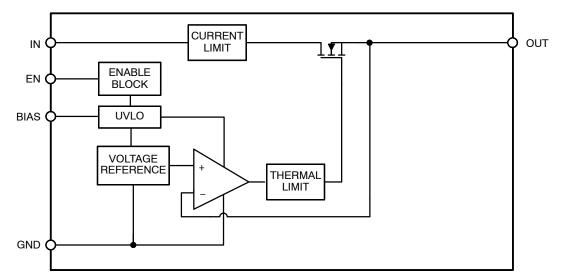
Figure 1. Typical Application Schematics

ON Semiconductor™

www.onsemi.com


MARKING DIAGRAM

XX M


XX = Specific Device Code = Date Code М

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 9 of this data sheet.

Figure 2. Simplified Schematic Block Diagram

PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description
1	OUT	Regulated Output Voltage pin
2	N/C	Not internally connected
3	EN	Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into shutdown mode.
4	BIAS	Bias voltage supply for internal control circuits. This pin is monitored by internal Under-Voltage Lockout Circuit.
5	GND	Ground pin
6	IN	Input Voltage Supply pin
Pad		Should be soldered to the ground plane for increased thermal performance.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	–0.3 to 6	V
Output Voltage	V _{OUT}	–0.3 to (V _{IN} +0.3) \leq 6	V
Chip Enable and Bias Input	$V_{\text{EN}}, V_{\text{BIAS}}$	–0.3 to 6	V
Output Short Circuit Duration	t _{SC}	unlimited	S
Maximum Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	T _A	-40 to 125	°C
Storage Temperature	T _{STG}	–55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

2. This device series incorporates ESD protection (except OUT pin) and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002

ESD Machine Model tested per AEC-Q100-003

Latchup Current Maximum Rating ±100 mA per AEC-Q100-004.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Мах	Unit
Input Voltage	V _{IN}	(V _{OUT} + V _{DO_IN})	5.5	V
Bias Voltage	V _{BIAS}	$(V_{OUT}+1.4) \geq 2.4$	5.5	V
Junction Temperature	TJ	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, WDFN6 2 mm x 2 mm Thermal Resistance, Junction-to-Air (Note 3)	$R_{\theta JA}$	65	°C/W

 This data was derived by thermal simulations based on the JEDEC JESD51 series standards methodology. Only a single device mounted at the center of a high – K (2s2p) 3in x 3in multilayer board with 1–ounce internal planes and 2–ounce copper on top and bottom. Top copper layer has a dedicated 125 sqmm copper area.

ELECTRICAL CHARACTERISTICS

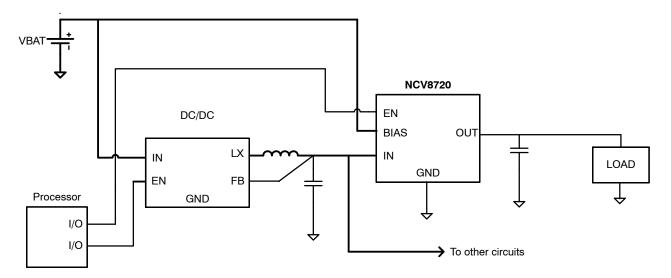
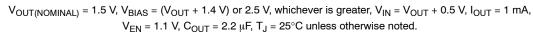
Over Operating Temperature Range (T_J = -40°C to +125°C), V_{BIAS} = (V_{OUT} + 1.4 V) or 2.5 V, whichever is greater; V_{IN} \ge V_{OUT} + 0.5 V, I_{OUT} = 1 mA, V_{EN} = 1.1 V, C_{OUT} = 2.2 μ F, unless otherwise noted. Typical values are at T_J = +25°C.

	Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating	Input Voltage Range			V _{IN}	V _{OUT} + V _{DO_IN}		5.5	V
Operating	Bias Voltage Range			V _{BIAS}	(V _{OUT} + 1.4) ≥ 2.4		5.5	V
Output Vol	tage Range (Note 4)				0.8		2.1	V
Outrout	Nominal	T _J = +25°C		V _{OUT}		±0.5		%
Output Voltage Accuracy	Over V_{BIAS} , V_{IN} , I_{OUT} , T _J = -40°C to +125°C	$\begin{array}{l} V_{OUT} + 1.4 \ V \leq V_{BIAS} \leq 5. \\ V_{OUT} + 0.5 \ V \leq V_{IN} \leq 4.5 \ V \\ 0 mA \leq I_{OUT} \leq 350 \ mA \end{array}$	5 V, /,	V _{OUT}	-2		+2	%
V _{IN} Line R	egulation	V _{IN} = (V _{OUT} + 0.5 V) to 4.	5 V, I _{OUT} = 1mA	$\Delta V_{OUT} / \Delta V_{IN}$		5.0		μV/V
V _{BIAS} Line	Regulation	V _{BIAS} = (V _{OUT} + 1.4 V) or ever is greater) to 5.5 V, I ₀		$\Delta V_{OUT} / \Delta V_{BIAS}$		16		μV/V
Load Regu	Ilation	0 mA \leq I _{OUT} \leq 350 mA (no	load to full load)	$\Delta V_{OUT} / \Delta I_{OUT}$		-1.0		μV/mA
V _{IN} Dropou	ut Voltage (Note 5)		4 V,	V _{DO_IN}		110	200	mV
V _{BIAS} Drop	oout Voltage (Note 6)	$V_{IN} = V_{OUT(NOM)} + 0.3 \text{ V},$	l _{OUT} = 350 mA	V _{DO_BIAS}		1.15	1.4	V
Output Cur	rrent Limit	Vout = 0.9 x Vout(NOM)		I _{CL}	420	600	1000	mA
Bias Pin C	urrent	I _{OUT} = 0 mA to 350 mA		I _{BIAS}		80	110	μΑ
Shutdown	Current (I _{GND})	$V_{EN} \le 0.4$ V, $T_J = -40^{\circ}C$ to	+85°C	ISHDN		0.5	2.0	μA
		$V_{IN} - V_{OUT} \ge 0.5 \text{ V},$ $I_{OUT} = 350 \text{ mA}$ $f = 10 \text{ Hz}$ $f = 100 \text{ Hz}$ $f = 10 \text{ Hz}$ $f = 10 \text{ kHz}$ $f = 10 \text{ kHz}$ $f = 100 \text{ kHz}$ $f = 100 \text{ kHz}$	f = 10 Hz			52		dB
			f = 100 Hz	PSRR (V _{IN})		56		
	Supply Dejection Datio		f = 1 kHz			65		
VIN Power-	Supply Rejection Ratio		f = 10 kHz			46		
					37		1	
			f = 1 MHz			25		1
		f = 10 Hz			65		1	
			f = 100 Hz	PSRR (V _{BIAS})		65		- dB
V _{BIAS} Pow	er-Supply Rejection	V _{IN} – V _{OUT} ≥ 0.5 V,	f = 1 kHz			70		
Ratio		I _{OUT} = 350 mA	f = 10 kHz			50		
			f = 100 kHz			35		
			f = 1 MHz	1		24		
Output Noi	se Voltage	BW = 10 Hz to 100 kHz		V _N		40		μVrмs
Inrush Cur	rent on V _{IN}			I _{VIN_INRUSH}		100 + I _{LOAD}		mA
Startup Tin	ne	V _{OUT} = 95% V _{OUT(NOM)} , I C _{OUT} = 2.2 μF	_{OUT} = 350 mA,	t _{STR}		140		μs
Enable Pin	High (enabled)			V _{EN(HI)}	1.1			V
Enable Pin	Low (disabled)			V _{EN(LO)}	0		0.4	V
Enable Pin	Current	V _{EN} = 5.5 V		I _{EN}		0.3	2.0	μA
Undervolta	ige Lock-out	V _{BIAS} rising				1.6		V
Hysteresis		V _{BIAS} falling		UVLO		0.2		V
Theursel	huddaum Tawa and	Shutdown, temperature in	creasing	_		+160		°C
i nermai Si	hutdown Temperature	Reset, temperature decre	asing	TsD		+140		°C
Operating	Junction Temperature			Тј	-40		+125	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. V_{OUT} nominal value is factory programmable. 5. Measured for devices with $V_{OUT(NOM)} \ge 1.2V$. 6. $V_{BIAS} - V_{OUT}$ with $V_{OUT} = V_{OUT(NOM)} - 0.1V$. Measured for devices with $V_{OUT(NOM)} \ge 1.4$ V.

APPLICATIONS INFORMATION

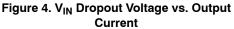


Figure 3. Typical Application: Low-Voltage Post-Regulator with ON/OFF functionality

TYPICAL CHARACTERISTICS

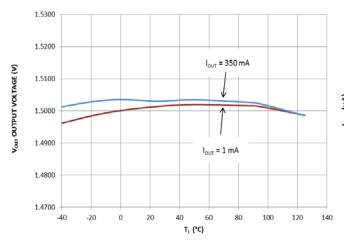
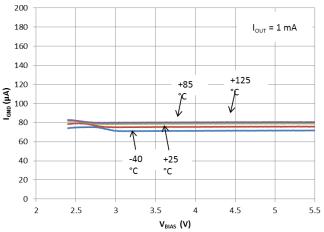
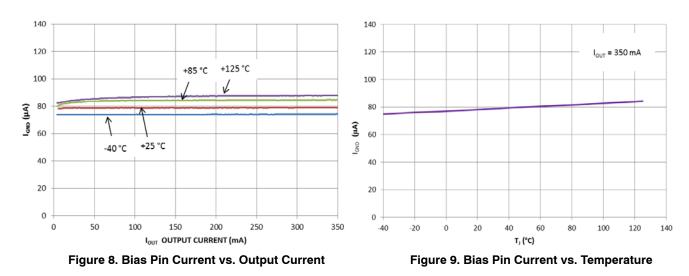
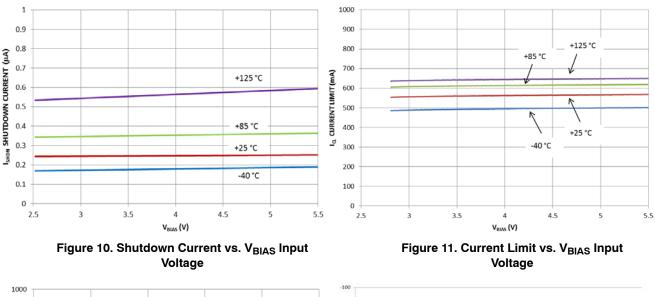




Figure 6. Output Voltage vs. Temperature

Figure 5. V_{BIAS} Dropout Voltage vs. Temperature



TYPICAL CHARACTERISTICS

 $V_{OUT(NOMINAL)}$ = 1.5 V, V_{BIAS} = (V_{OUT} + 1.4 V) or 2.5 V, whichever is greater, V_{IN} = V_{OUT} + 0.5 V, I_{OUT} = 1 mA, V_{EN} = 1.1 V, C_{OUT} = 2.2 $\mu F,\,T_J$ = 25°C unless otherwise noted.

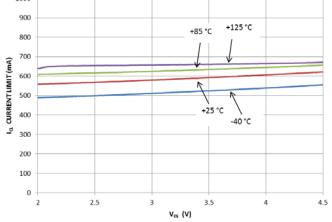
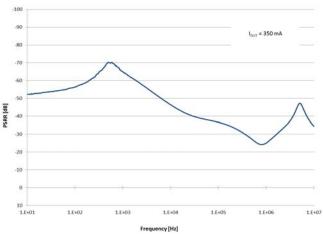
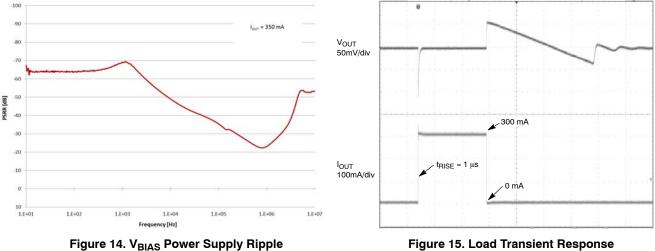




Figure 12. Current Limit vs. V_{IN} Input Voltage

Rejection vs. Frequency

Figure 15. Load Transient Response

APPLICATIONS INFORMATION

The NCV8720 dual-rail very low dropout voltage regulator is using NMOS pass transistor for output voltage regulation from V_{IN} voltage. All the low current internal controll circuitry is powered from the V_{BIAS} voltage.

The use of an NMOS pass transistor offers several advantages in applications. Unlike a PMOS topology devices, the output capacitor has reduced impact on loop stability. V_{IN} to V_{OUT} operating voltage difference can be very low compared with standard PMOS regulators in very low V_{IN} applications.

The NCV8720 offers built-in Soft-Start with monotonic V_{OUT} rise. The controlled voltage rising limits the inrush current.

The Enable (EN) input is equipped with internal hysteresis.

NCV8720 is a Fixed Voltage linear regulator.

Dropout Voltage

Because of two power supply inputs V_{IN} and V_{BIAS} and one V_{OUT} regulator output, there are two Dropout voltages specified.

The first, the V_{IN} Dropout voltage is the voltage difference ($V_{IN} - V_{OUT}$) at which the regulator output no longer maintains regulation against further reductions in input voltage. V_{BIAS} is high enough, specific value is published in the Electrical Characteristics table.

The second, V_{BIAS} dropout voltage is the voltage difference ($V_{BIAS} - V_{OUT}$) at which the regulator output no longer maintains regulation against further reductions in V_{BIAS} voltage. V_{IN} is high enough.

Input and Output Capacitors

The device is designed to be stable for ceramic output capacitors with Effective capacitance in the range from 2.2 μ F to 10 μ F. The device is also stable with multiple capacitors in parallel, having the total effective capacitance in the specified range.

In applications where no low input supplies impedance available (PCB inductance in V_{IN} and/or V_{BIAS} inputs as example), the recommended $C_{IN} = 1 \,\mu\text{F}$ and $C_{BIAS} = 0.1 \,\mu\text{F}$ or greater. Ceramic capacitors are recommended. For the best performance all the capacitors should be connected to the NCV8720 respective pins directly in the device PCB copper layer, not through vias having not negligible impedance.

When using small ceramic capacitor, their capacitance is not constant but varies with applied DC biasing voltage, temperature and tolerance. The effective capacitance can be much lower than their nominal capacitance value, most importantly in negative temperatures and higher LDO output voltages. That is why the recommended Output capacitor capacitance value is specified as Effective value in the specific application conditions.

Enable Operation

The enable pin will turn the regulator on or off. The threshold limits are covered in the electrical characteristics table in this data sheet. If the enable function is not to be used then the pin should be connected to V_{IN} or V_{BIAS} . When enabled, the device consumes roughly 20 μ A from Vin supply per 1 V nominal output voltage. That is why using the enable / disable function in power saving applications is recommended.

Current Limitation

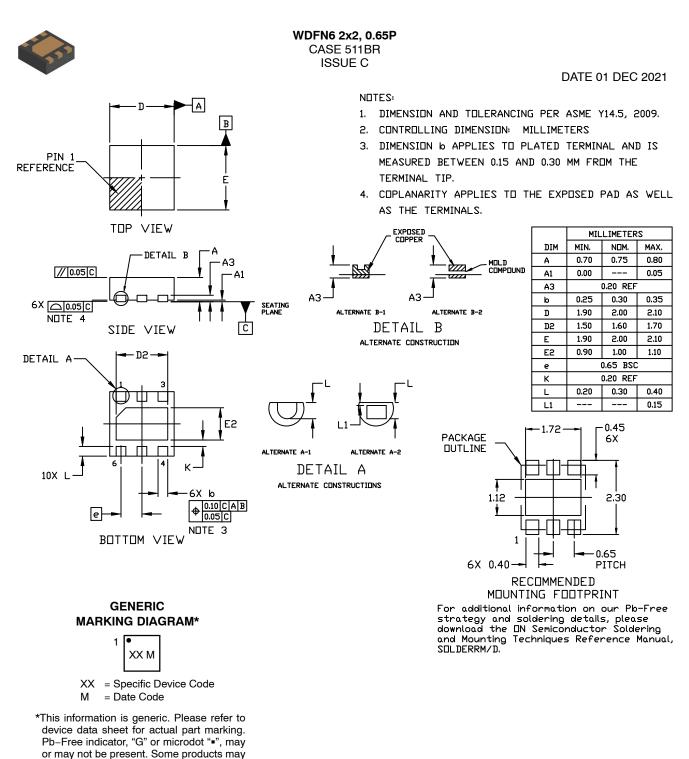
The internal Current Limitation circuitry allows the device to supply the full nominal current and surges but protects the device against Current Overload or Short.

Thermal Protection

Internal thermal shutdown (TSD) circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When TSD activated, the regulator output turns off. When cooling down under the low temperature threshold, device output is activated again. This TSD feature is provided to prevent failures from accidental overheating.

Power Dissipation

The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. For reliable operation junction temperature should be limited to $+125^{\circ}$ C.


ORDERING INFORMATION

Device	Nominal Output Voltage	Marking	Package	Shipping [†]	
NCV8720BMT090TBG	0.90 V	LU			
NCV8720BMT100TBG	1.00 V	LA			
NCV8720BMT105TBG	1.05 V	LC			
NCV8720BMT110TBG	1.10 V	LD			
NCV8720BMT115TBG	1.15 V	LE			
NCV8720BMT120TBG	1.20 V	LF			
NCV8720BMT125TBG	1.25 V	LG	WDFN6		
NCV8720BMT130TBG	1.30 V	LH	(Non-Wettable Flank)	3000 / Tape & Reel	
NCV8720BMT135TBG	1.35 V	LJ	(Pb-Free)		
NCV8720BMT140TBG	1.40 V	LK			
NCV8720BMT145TBG	1.45 V	LL			
NCV8720BMT150TBG	1.50 V	LM			
NCV8720BMT160TBG	1.60 V	LN			
NCV8720BMT170TBG	1.70 V	LP			
NCV8720BMT180TBG	1.80 V	LQ			
NCV8720BMTW090TBG	0.90 V	KU			
NCV8720BMTW110TBG	1.10 V	KD			
NCV8720BMTW120TBG	1.20 V	KF	WDFN6		
NCV8720BMTW130TBG	1.30 V	КН	(Wettable Flank) (Pb-Free)	3000 / Tape & Reel	
NCV8720BMTW150TBG	1.50 V	КМ			
NCV8720BMTW180TBG	1.80 V	KQ			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

To order other package and voltage variants, please contact your ON sales representative

onsemi

DOCUMENT NUMBER:	98AON55829E	Electronic versions are uncontrolled except when accessed directly from the Document Repose Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

not follow the Generic Marking.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended o

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/suport/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.