

NID5001NT4G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NID5001NT4G-DG

Manufacturer onsemi

Manufacturer Product Number NID5001NT4G

Description IC PWR DRIVER N-CHANNEL 1:1 DPAK

Detailed Description Power Switch/Driver 1:1 N-Channel 33A DPAK

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NID5001NT4G	onsemi
Series:	Product Status:
HDPlus™	Obsolete
Switch Type:	Number of Outputs:
General Purpose	1
Ratio - Input:Output:	Output Configuration:
	Low Side
1:1	
Output Type:	Interface:
N-Channel	On/Off
Voltage - Load:	Voltage - Supply (Vcc/Vdd):
42V (Max)	Not Required
Current - Output (Max):	Rds On (Typ):
33A	23mOhm
Input Type:	Features:
Non-Inverting	Auto Restart, Slew Rate Controlled
Fault Protection:	Operating Temperature:
Current Limiting (Fixed), Over Temperature, Over Voltage	-55°C ~ 150°C (TJ)
Mounting Type:	Supplier Device Package:
Surface Mount	DPAK
Package / Case:	Base Product Number:
TO-252-3, DPAK (2 Leads + Tab), SC-63	NID5001

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8541.29.0095

Self-Protected FET with Temperature and Current Limit

HDPlus devices are an advanced series of power MOSFETs which utilize ON Semicondutor's latest MOSFET technology process to achieve the lowest possible on–resistance per silicon area while incorporating smart features. Integrated thermal and current limits work together to provide short circuit protection. The devices feature an integrated Drain–to–Gate Clamp that enables them to withstand high energy in the avalanche mode. The Clamp also provides additional safety margin against unexpected voltage transients. Electrostatic Discharge (ESD) protection is provided by an integrated Gate–to–Source Clamp.

Features

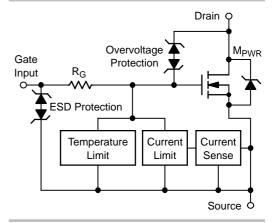
- Low R_{DS(on)}
- Current Limitation
- Thermal Shutdown with Automatic Restart
- Short Circuit Protection
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Slew Rate Control for Low Noise Switching
- Overvoltage Clamped Protection
- Pb-Free Package is Available

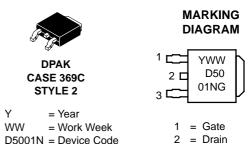
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V_{DSS}	42	Vdc
Drain-to-Gate Voltage Internally Clamped (RGS = 1.0 M Ω)	V_{DGR}	42	Vdc
Gate-to-Source Voltage	V_{GS}	±14	Vdc
Drain Current - Continuous	I _D	Internally Limited	
Total Power Dissipation @ T _A = 25°C (Note 1) @ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2)	P _D	64 1.0 1.56	W
Thermal Resistance, Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$R_{ heta JC} \ R_{ heta JA} \ R_{ heta JA}$	1.95 120 80	°C/W
Single Pulse Drain–to–Source Avalanche Energy $(V_{DD}=25~\text{Vdc},~V_{GS}=5.0~\text{Vdc},\\ I_L=4.5~\text{Apk},~L=120~\text{mH},~R_G=25~\Omega)$	E _{AS}	1215	mJ
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Minimum FR4 PCB, steady state.
- 2. Mounted onto a 2" square FR4 board (1" square, 2 oz. Cu 0.06" thick single–sided, t = steady state).




ON Semiconductor®

http://onsemi.com

V _{DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX (Limited)
42 V	23 m Ω @ 10 V	33 A*

*Max current may be limited below this value depending on input conditions.

ORDERING INFORMATION

= Pb-Free Package

Device	Package	Shipping [†]
NID5001NT4	DPAK	2500/Tape & Reel
NID5001NT4G	DPAK (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

= Source

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Char	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
$\begin{array}{l} \text{Drain-to-Source Clamped Breakdow} \\ \text{(V}_{GS} = 0 \text{ Vdc, I}_D = 250 \text{ μAdc)} \\ \text{(V}_{GS} = 0 \text{ Vdc, I}_D = 250 \text{ μAdc, T}_J = 250 μ	V _{(BR)DSS}	42 42	46 44	50 50	Vdc	
Zero Gate Voltage Drain Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc) (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc, T _J =	I _{DSS}		1.5 6.5	5.0	μAdc	
Gate Input Current (V _{GS} = 5.0 Vdc, V _{DS} = 0 Vdc)		I _{GSSF}		50	100	μAdc
ON CHARACTERISTICS						
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.2 mAdc) Threshold Temperature Coefficier	ıt	V _{GS(th)}	1.0	1.8 5.0	2.0	Vdc -mV/°C
Static Drain-to-Source On-Resistan ($V_{GS} = 10 \text{ Vdc}, I_D = 5.0 \text{ Adc}, T_J \text{ (}V_{GS} = 10 \text{ Vdc}, I_D = 5.0 \text{ Adc}, $	25°C) ´	R _{DS(on)}		23 43	29 55	mΩ
Static Drain-to-Source On-Resistan ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 5.0 \text{ Adc}$, T_J ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 5.0 \text{ Adc}$, T_J ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 5.0 \text{ Adc}$, T_J ($V_{GS} = 5.0 \text{ Vdc}$)	R _{DS(on)}		28 50	34 60	mΩ	
Source–Drain Forward On Voltage (I _S = 5 A, V _{GS} = 0 V)	V _{SD}		0.80	1.1	V	
SWITCHING CHARACTERISTICS						
Turn-on Time	$V_{GS} = 5.0 V_{dc}, V_{DD} = 25 V_{dc}$	T _(on)		32	40	μs
Turn-off Time	$I_D = 1.0 A_{dc}$, Ext $R_G = 2.5 \Omega$	T _(off)		68	75	
Turn-on Time	$V_{GS} = 10 V_{dc}, V_{DD} = 25 V_{dc}$	T _(on)		11	15	
Turn-off Time	$I_D = 1.0 A_{dc}$, Ext $R_G = 2.5 \Omega$	T _(off)		86	95	1
Slew Rate On	$R_L = 4.7 \Omega,$ $V_{in} = 0 \text{ to } 10 \text{ V}, V_{DD} = 12 \text{ V}$	-dV _{DS} /dt _{on}		0.5		V/μs
Slew–Rate Off $R_{L} = 4.7 \ \Omega, \\ V_{in} = 10 \ to \ 0 \ V, \ V_{DD} = 12 \ V$		dV _{DS} /dt _{off}		0.35		V/μs
SELF PROTECTION CHARACTERIS	STICS (T _J = 25°C unless otherwise noted)	•	•	•	•	•
Current Limit	$(V_{GS} = 5.0 \text{ Vdc})$ $V_{DS} = 10 \text{ V} (V_{GS} = 5.0 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	I _{LIM}	21 12	30 19	36 30	Adc
	(V _{GS} = 10 Vdc) V _{DS} = 10 V (V _{GS} = 10 Vdc, T _J = 150°C)		29 13	41 24	49 31	
Temperature Limit (Turn-off)	V _{GS} = 5.0 Vdc	T _{LIM(off)}	150	175	200	°C
Temperature Limit (Circuit Reset)	V _{GS} = 5.0 Vdc	T _{LIM(on)}	135	160	185	°C
Temperature Limit (Turn-off)	V _{GS} = 10 Vdc	T _{LIM(off)}	150	165	185	°C
Temperature Limit (Circuit Reset)			135	150	170	°C
ESD ELECTRICAL CHARACTERIS	FICS (T _J = 25°C unless otherwise noted)					
Electro-Static Discharge Capability Human Body Model (HBM) Machine Model (MM)	ESD	4000 400			V	

^{3.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

TYPICAL PERFORMANCE CURVES

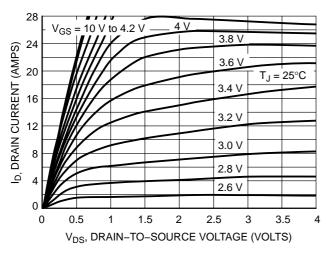
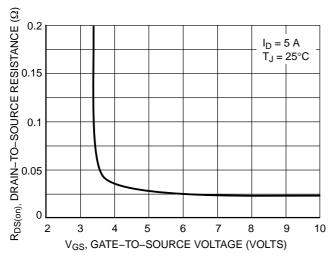



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

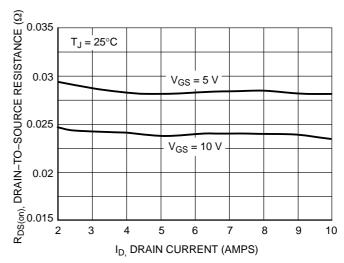
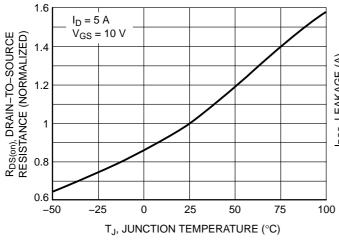



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

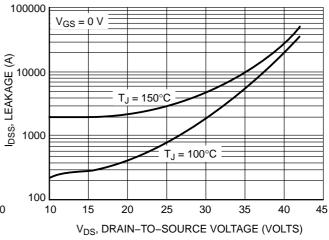


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

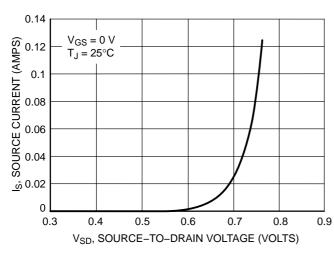
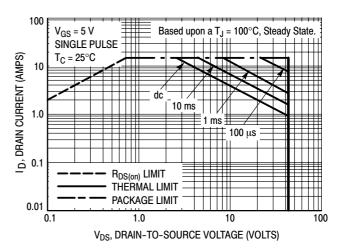
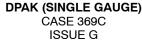
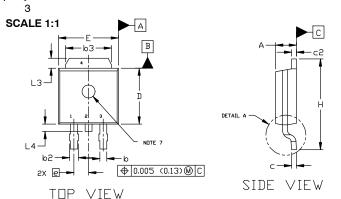


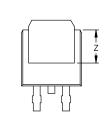
Figure 7. Diode Forward Voltage vs. Current

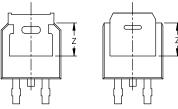



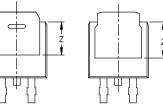

Figure 8. Maximum Rated Forward Biased Safe Operating Area

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

DATE 31 MAY 2023






- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES 1. 2.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE DUTERMOST EXTREMES OF THE PLASTIC BODY.

 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- OPTIONAL MOLD FEATURE.

DIM	INCHES		MILLIM	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
C	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040	-	1.01
Z	0.155		3.93	

BOTTOM VIEW

2.58

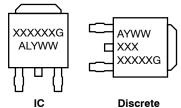
[0.102]

1.60

[0.063]

5.80

BOTTOM VIEW AL TERNATE CONSTRUCTIONS


ROTATED 90°

[0.228] 6.20 -L2 GAUGE PLANE [0.244] 3.00 FN 1181 DETAIL A

Н С Δ1

CW

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

6.17 [0.243]

STYLE 1: PIN 1. BASE

STYLE 2: PIN 1. GATE STYLE 3: PIN 1. ANODE STYLE 4: PIN 1. CATHODE STYLE 5: PIN 1. GATE 2. COLLECTOR 2. DRAIN 2. CATHODE 2. ANODE 2. ANODE 3 SOURCE 3 CATHODE 3 FMITTER 3 ANODE 3 GATE COLLECTOR 4. DRAIN 4. CATHODE 4. ANODE ANODE

STYLE 6: STYLE 7: PIN 1. GATE 2. COLLECTOR STYLE 8: STYLE 9: STYLE 10: PIN 1. MT1 2. MT2 PIN 1. N/C 2. CATHODE 3. ANODE PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE 3 CATHODE 3 FMITTER 3 RESISTOR ADJUST 3 GATE 4. COLLECTOR 4. CATHODE 4. ANODE CATHODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com