

NLU1GT86CMX1TCG Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NLU1GT86CMX1TCG-DG

Manufacturer onsemi

Manufacturer Product Number NLU1GT86CMX1TCG

Description IC GATE XOR 1CH 2-INP 6ULLGA

Detailed Description XOR (Exclusive OR) IC 1 Channel 6-ULLGA (1x1)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NLU1GT86CMX1TCG	onsemi
Series:	Product Status:
MiniGate™	Obsolete
Logic Type:	Number of Circuits:
XOR (Exclusive OR)	1
Number of Inputs:	Features:
2	
Voltage - Supply:	Current - Quiescent (Max):
1.65V ~ 5.5V	1 μΑ
Current - Output High, Low:	Input Logic Level - Low:
8mA, 8mA	0.53V ~ 0.8V
Input Logic Level - High:	Max Propagation Delay @ V, Max CL:
1.4V ~ 2V	8.8ns @ 5V, 50pF
Operating Temperature:	Mounting Type:
-55°C ~ 125°C	Surface Mount
Supplier Device Package:	Package / Case:
6-ULLGA (1x1)	6-XFLGA
Base Product Number:	
NLU1GT86	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

Single 2-Input Exclusive OR Gate, TTL Level

LSTTL-Compatible Inputs

The NLU1GT86 MiniGate[™] is an advanced CMOS high-speed 2-input Exclusive OR gate in ultra-small footprint.

The device input is compatible with TTL-type input thresholds and the output has a full 5.0 V CMOS level output swing.

The NLU1GT86 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

Features

- High Speed: $t_{PD} = 3.1 \text{ ns (Typ)} @ V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL-Compatible Input: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$
- CMOS–Compatible Output:
 - $V_{OH} > 0.8 V_{CC}$; $V_{OL} < 0.1 V_{CC}$ @ Load
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Ultra-Small Packages
- These are Pb-Free Devices

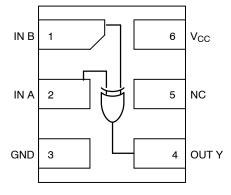


Figure 1. Pinout (Top View)

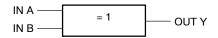


Figure 2. Logic Symbol

FUNCTION TABLE

Inp	Output	
Α	В	Y
T T	」エ	L H H L

PIN ASSIGNMENT

1	IN B
2	IN A
3	GND
4	OUT Y
5	NC
6	V _{CC}

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

UDFN6 1.2 x 1.0 CASE 517AA

6 = Device Marking M = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	−0.5 to +7.0	V
V _{IN}	DC Input Voltage	-0.5 to +7.0	٧
V _{OUT}	DC Output Voltage	-0.5 to +7.0	V
I _{IK}	DC Input Diode Current V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current V _{OUT} < GND	±20	mA
I _O	DC Output Source/Sink Current	±12.5	mA
I _{CC}	DC Supply Current Per Supply Pin	±25	mA
I _{GND}	DC Ground Current per Ground Pin	±25	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 2000 > 150 N/A	٧
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GND at 125°C (Note 5)	±500	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

- 2. Tested to EIA / JESD22-A114-A.
- 3. Tested to EIA / JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V
V _{IN}	Digital Input Voltage	0	5.5	V
V _{OUT}	Output Voltage	0	5.5	V
T _A	Operating Free-Air Temperature	-55	+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate $ V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} $	0 0	100 20	ns/V

DC ELECTRICAL CHARACTERISTICS

				T _A = 25 °C		T _A = -	+85°C	_ ~	-55°C 25°C		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Low-Level Input Voltage		3.0 4.5 to 5.5	1.4 2.0			1.4 2.0		1.4 2.0		V
V _{IL}	Low-Level Input Voltage		3.0 4.5 to 5.5			0.53 0.8		0.53 0.8		0.53 0.8	V
V _{OH}	High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		
V _{OL}	Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu\text{A}$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V
		$V_{IN} = V_{IH}$ or V_{IL} $I_{OL} = 4$ mA $I_{OL} = 8$ mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
Icc	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		20		40	μΑ
Ісст	Quiescent Supply Current	V _{IN} = 3.4 V	5.5			1.35		1.50		1.65	mA
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5 V	0.0			0.5		5.0		10	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0 \text{ ns}$)

		V _{CC}	Test	т	A = 25 °(С	T _A = +	⊦85°C		-55°C 25°C	
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay, Input A to	3.0 to	C _L = 15 pF		5.0	11.0		13.0		15.5	ns
t _{PHL}	Output Y	3.6	C _L = 50 pF		6.2	14.5		16.5		19.5	
		4.5 to	C _L = 15 pF		3.1	6.8		6.0		10.0	
		5.5	C _L = 50 pF		4.2	8.8		10.0		12.0	
C _{IN}	Input Capacitance				5.5	10		10		10.0	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	5.0			11						pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

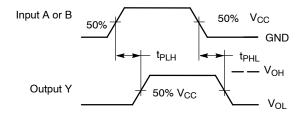
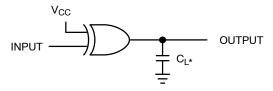



Figure 3. Switching Waveforms

*Includes all probe and jig capacitance.

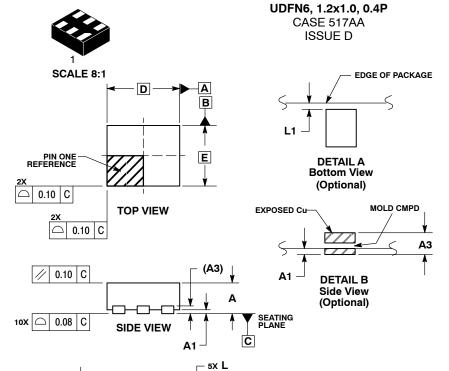
A 1-MHz square input wave is recommended for propagation delay tests.

Figure 4. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
NLU1GT86MUTCG	UDFN6, 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


6X **b**

0.10 | C | A | B

0.05 C

NOTE 3

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

е

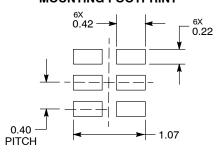
BOTTOM VIEW

DATE 03 SEP 2010

NOTES

- DIMENSIONING AND TOLERANCING PER
 ASME V14 5M 1994
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
DIM	MIN	MAX				
Α	0.45	0.55				
A1	0.00	0.05				
А3	0.127	REF				
b	0.15	0.25				
D	1.20	BSC				
E	1.00	BSC				
е	0.40	BSC				
L	0.30	0.40				
L1	0.00	0.15				
L2	0.40	0.50				


GENERIC MARKING DIAGRAM*

X = Specific Device CodeM = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

MOUNTING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON22068D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	6 PIN UDFN, 1.2X1.0, 0.4P		PAGE 1 OF 1			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com