

NLV74HC139ADR2G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NLV74HC139ADR2G-DG

Manufacturer onsemi

Manufacturer Product Number NLV74HC139ADR2G

Description IC DECODER/DEMUX 1X2:4 16SOIC

Detailed Description Decoder/Demultiplexer 1 x 2:4 16-SOIC

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

74HC139

8542.39.0001

Purchase and inquiry

NLV74HC139ADR2GonsemiSeries:Product Status:74HCObsoleteType:Circuit:Decoder/Demultiplexer1 x 2:4Independent Circuits:Current - Output High, Low:	Manufacturer Product Number:	Manufacturer:
74HC Obsolete Type: Circuit: Decoder/Demultiplexer 1 x 2:4	NLV74HC139ADR2G	onsemi
Type: Circuit: Decoder/Demultiplexer 1 x 2:4	Series:	Product Status:
Decoder/Demultiplexer 1 x 2:4	74HC	Obsolete
	Type:	Circuit:
Independent Circuits: Current - Output High, Low:	Decoder/Demultiplexer	1 x 2:4
	Independent Circuits:	Current - Output High, Low:
2 5.2mA, 5.2mA	2	5.2mA, 5.2mA
Voltage Supply Source: Voltage - Supply:	Voltage Supply Source:	Voltage - Supply:
Single Supply 2V ~ 6V	Single Supply	2V ~ 6V
Operating Temperature: Mounting Type:	Operating Temperature:	Mounting Type:
-55°C ~ 125°C Surface Mount	-55°C ~ 125°C	Surface Mount
Package / Case: Supplier Device Package:	Package / Case:	Supplier Device Package:
16-SOIC (0.154", 3.90mm Width) 16-SOIC	16-SOIC (0.154", 3.90mm Width)	16-SOIC
Base Product Number:	Base Product Number:	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Dual 1-of-4 Decoder/ Demultiplexer

High-Performance Silicon-Gate CMOS

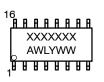
MC74HC139A

The MC74HC139A is identical in pinout to the LS139. The device inputs are compatible with standard CMOS outputs; with pull-up resistors, they are compatible with LSTTL outputs.

This device consists of two independent 1-of-4 decoders, each of which decodes a two-bit Address to one-of-four active-low outputs. Active-low Selects are provided to facilitate the demultiplexing and cascading functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output, and utilizing the Select as a data input.

Features

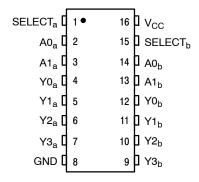
- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 100 FETs or 25 Equivalent Gates
- –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable*
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



TSSOP-16 DT SUFFIX CASE 948F

QFN16 MN SUFFIX CASE 485AW

MARKING DIAGRAMS


A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

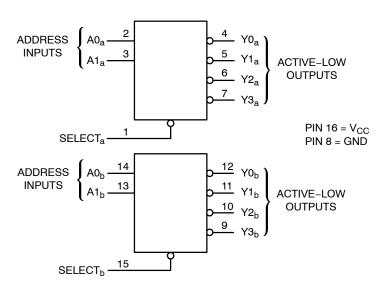


Figure 1. Logic Diagram

FUNCTION TABLE

	Inputs			Out	puts	
Select	A 1	A0	Y0	Y1	Y2	Y3
Н	Х	Χ	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	L	Н	Н	L	Н	Н
L	Н	L	Н	Н	L	Н
L	Н	Н	Н	Н	Н	L

X = don't care

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to V _{CC} + 0.5	V
V _{OUT}	DC Output Voltage		-0.5 to V _{CC} + 0.5	V
I _{IN}	DC Input Current, per Pin		±20	mA
I _{OUT}	DC Output Current, per Pin		±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±50	mA
I _{IK}	Input Clamp Current (V _{IN} < 0 or V _{IN} > V _{CC})		±20	mA
I _{OK}	Output Clamp Current (V _{OUT} < 0 or V _{OUT} > V _{CC})		±20	mA
T _{STG}	Storage Temperature		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature Under Bias		±150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 1)	SOIC-16 QFN16 TSSOP-16	126 118 159	°C/W
P _D	Power Dissipation in Still Air at 25°C	SOIC-16 QFN16 TSSOP-16	995 1062 787	mW
MSL	Moisture Sensitivity		Level 1	_
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	2000 1000	٧
I _{LATCHUP}	Latchup Performance (Note 3)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
- 3. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	6.0	V
V_{IN}, V_{OUT}	DC Input Voltage, Output Voltage	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0 \text{ V} \\ \text{(Figure 3)} \\ V_{CC} = 4.5 \text{ V} \\ V_{CC} = 6.0 \text{ V}$	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

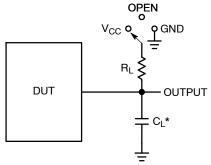
4. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	Guaran	teed Limi	t	
Symbol	Parameter	Test Conditions	V	-55°C to 25°C	≤ 85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	V_{OUT} = 0.1 V or V_{CC} – 0.1 V $ I_{OUT} \le 20 \mu A$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	V_{OUT} = 0.1 V or V_{CC} – 0.1 V $ I_{OUT} \le 20 \mu A$	2.0 4.5 6.0	0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		V_{IN} = V_{IH} or V_{IL} $ I_{OUT} \le 4.0 \text{ m}$ $ I_{OUT} \le 5.2 \text{ m}$	A 4.5 A 6.0	3.98 5.48	3.84 5.34	3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	٧
		V_{IN} = V_{IH} or V_{IL} $ I_{OUT} \le 4.0 \text{ m}$ $ I_{OUT} \le 5.2 \text{ m}$	A 4.5 A 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
I _{IN}	Maximum Input Leakage Current	V _{IN} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	V_{IN} = V_{CC} or GND I_{OUT} = 0 μA	6.0	4	40	160	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS


		V _{CC}	Guaranteed Limit			
Symbol	Parameter	٧	-55°C to 25°C	≤ 85°C	≤125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Select to Output Y (Figures 2 and 3)	2.0 4.5 6.0	115 23 20	145 29 25	175 35 30	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 2 and 4)	2.0 4.5 6.0	115 23 20	145 29 25	175 35 30	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 3)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Decoder) (Note 5)	55	рF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

SWITCHING WAVEFORMS AND TEST CIRCUIT

Test	Switch Position	CL	R _L
t _{PLH} / t _{PHL}	Open	50 pF	1 kΩ
t _{PLZ} / t _{PZL}	V _{CC}		
t _{PHZ} / t _{PZH}	GND		

*C_I Includes probe and jig capacitance

Figure 2. Test Circuit

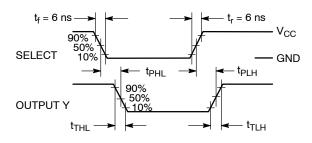


Figure 3. Switching Waveform

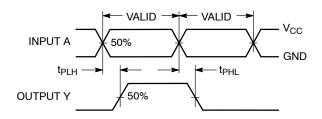


Figure 4. Switching Waveform

PIN DESCRIPTIONS

ADDRESS INPUTS

A0_a, A1_a, A0_b, A1_b (Pins 2, 3, 14, 13)

Address inputs. These inputs, when the respective 1-of-4 decoder is enabled, determine which of its four active-low outputs is selected.

CONTROL INPUTS

Select_a, Select_b (Pins 1, 15)

Active-low select inputs. For a low level on this input, the outputs for that particular decoder follow the Address

inputs. A high level on this input forces all outputs to a high level.

OUTPUTS

Y0_a - Y3_a, Y0_b - Y3_b (Pins 4 - 7, 12, 11, 10, 9)

Active—low outputs. These outputs assume a low level when addressed and the appropriate Select input is active. These outputs remain high when not addressed or the appropriate Select input is inactive.

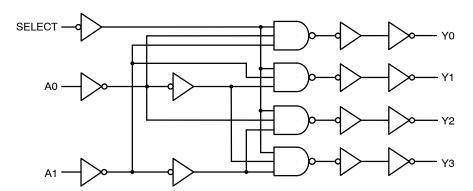
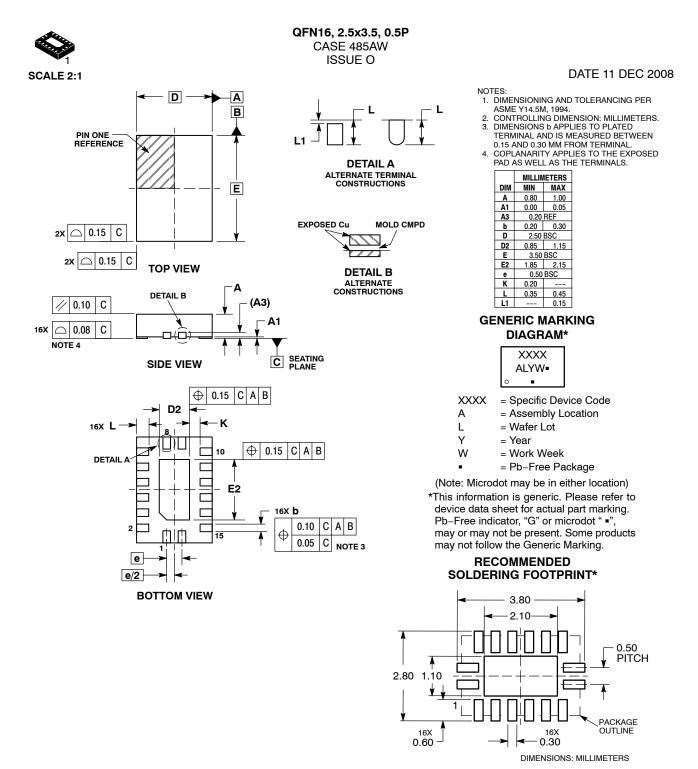


Figure 5. Expanded Logic Diagram (1/2 of Device)

ORDERING INFORMATION


Device	Marking	Package	Shipping [†]
MC74HC139ADR2G	HC139AG	SOIC-16	2500 / Tape & Reel
MC74HC139ADR2G-Q*	HC139AG	SOIC-16	2500 / Tape & Reel
MC74HC139ADTR2G	HC 139A	TSSOP-16	2500 / Tape & Reel
MC74HC139ADTR2G-Q*	HC 139A	TSSOP-16	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

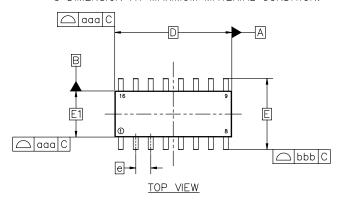
Capable.

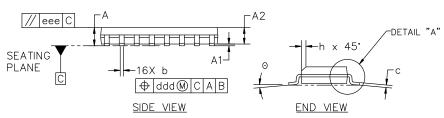
PACKAGE DIMENSIONS

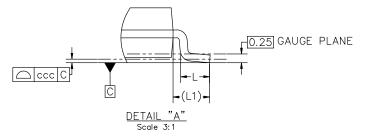
*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MECHANICAL CASE OUTLINE

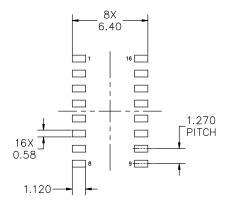
PACKAGE DIMENSIONS




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

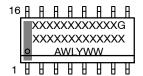
NOTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS					
DIM	MIN	NOM	MAX		
А	1.35	1.55	1.75		
A1	0.10	0.18	0.25		
A2	1.25	1.37	1.50		
b	0.35	0.42	0.49		
С	0.19	0.22	0.25		
D		9.90 BSC			
E	6.00 BSC				
E1	3.90 BSC				
е	1.27 BSC				
h	0.25		0.50		
L	0.40	0.83	1.25		
L1		1.05 REF			
Θ	0.		7.		
TOLERAN	CE OF FORM AND POSITION				
aaa	0.10				
bbb	0.20				
ccc	0.10				
ddd		0.25			
eee		0.10			

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D


DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 1 OF 2		

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27PCASE 751B ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

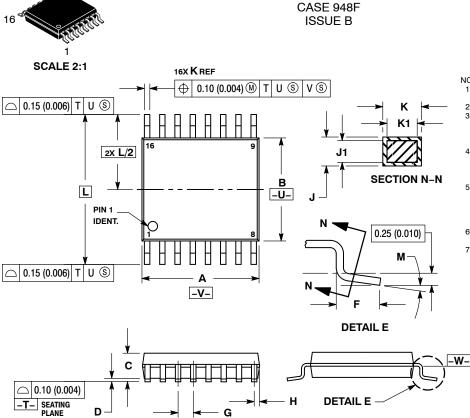
XXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

077/15/		OT) ((F o		077/15 0	,	T.4.	
STYLE 1: PIN 1.	COLLECTOR	STYLE 2: PIN 1.	CATHODE	STYLE 3: PIN 1.	COLLECTOR, DYE #1	STYLE 4: PIN 1.	COLLECTOR, DYE #1
PIN 1. 2.	BASE	PIN 1. 2.	ANODE		BASE. #1	PIN 1. 2.	
2. 3.	EMITTER	2. 3.	NO CONNECTION	2.			
	NO CONNECTION	3. 4.	CATHODE	3.	EMITTER, #1 COLLECTOR, #1	3. 4.	
4. 5.	EMITTER	4. 5.	CATHODE	4. 5.	COLLECTOR, #1	4. 5.	
	BASE		NO CONNECTION		BASE. #2		
6.	COLLECTOR	6. 7.		6.		6.	
7.				7.	EMITTER, #2	7.	
8.	COLLECTOR	8.		8.	COLLECTOR, #2	8.	
9.	BASE	9.		9.		9.	
10.	EMITTER	10.			BASE, #3	10.	
11.	NO CONNECTION EMITTER	11.			EMITTER, #3	11.	
12.			CATHODE		COLLECTOR, #3	12.	
13.	BASE		CATHODE	13.		13.	
14.	COLLECTOR	14.		14.		14.	
15.	EMITTER		ANODE	15.		15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, #2	3.	CATHODE	3.			
4.	DRAIN, #2	4.	CATHODE	4.			
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.			
7.	DRAIN, #4	7.		7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH		
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4	10.	ANODE	10.			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT)		
12.	SOURCE, #3		ANODE	12.	COMMON DRAIN (OUTPUT)		
13.	GATE, #2	13.	ANODE	13.	GATE N-CH		
14.	SOURCE, #2		ANODE	14.			
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT)		
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH		

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 2 OF 2


onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSSOP-16 WB

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DATE 19 OCT 2006

NOTES

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65 BSC		0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
84	0.0	0.0	00	0	

RECOMMENDED SOLDERING FOOTPRINT*

7.06 0.65 **PITCH** 16X 0.36 1.26 **DIMENSIONS: MILLIMETERS**

GENERIC MARKING DIAGRAM*

= Specific Device Code XXXX Α = Assembly Location

= Wafer Lot L = Year = Work Week W

G or •

*This information is generic. Please refer to

= Pb-Free Package

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com