

NSBC143TDXV6T1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NSBC143TDXV6T1G-DG

Manufacturer onsemi

Manufacturer Product Number NSBC143TDXV6T1G

Description TRANS PREBIAS 2NPN 50V SOT563

Detailed Description Pre-Biased Bipolar Transistor (BJT) 2 NPN - Pre-Bia

sed (Dual) 50V 100mA 500mW Surface Mount SOT-

563

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NSBC143TDXV6T1G	onsemi
Series:	Product Status:
	Active
Transistor Type:	Current - Collector (Ic) (Max):
2 NPN - Pre-Biased (Dual)	100mA
Voltage - Collector Emitter Breakdown (Max):	Resistor - Base (R1):
50V	4.7kOhms
Resistor - Emitter Base (R2):	DC Current Gain (hFE) (Min) @ lc, Vce:
	160 @ 5mA, 10V
Vce Saturation (Max) @ lb, lc:	Current - Collector Cutoff (Max):
250mV @ 1mA, 10mA	500nA
Frequency - Transition:	Power - Max:
	500mW
Mounting Type:	Package / Case:
Surface Mount	SOT-563, SOT-666
Supplier Device Package:	Base Product Number:
SOT-563	NSBC143

Environmental & Export classification

8541.21.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Dual NPN Bias Resistor Transistors $R1 = 4.7 k\Omega$, $R2 = \infty k\Omega$

NPN Transistors with Monolithic Bias Resistor Network

MUN5216DW1, **NSBC143TDXV6**

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

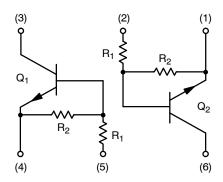
MAXIMUM RATINGS

(T_A = 25°C, common for Q1 and Q2, unless otherwise noted)

Symbol	Rating	Max	Unit
V_{CBO}	Collector-Base Voltage	50	Vdc
V _{CEO}	Collector-Emitter Voltage	50	Vdc
Ic	Collector Current - Continuous	100	mAdc
V _{IN(fwd)}	Input Forward Voltage	30	Vdc
V _{IN(rev)}	Input Reverse Voltage	6	Vdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1



SOT-363 **CASE 419B**

SOT-563 CASE 463A

PIN CONNECTIONS

MARKING DIAGRAMS

SOT-563 CASE 463A

7F = Specific Device Code M = Date Code*

(Note: Microdot may be in either location)

= Pb-Free Package

*Date Code orientation may vary depending upon manufacturing location.

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been DISCONTINUED. Please refer to the table on page 5.

THERMAL CHARACTERISTICS

Symbol		Characteristic	Max	Unit
MUN5216DW	1 (SOT-363) One Junction Heat	ed		
P _D	Total Device Dissipation $T_A = 25^{\circ}C \qquad \text{(Note 1)}$ (Note 2) Derate above 25°C (Note 2)	(Note 1)	187 256 1.5 2.0	mW mW/°C
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	670 490	°C/W
MUN5216DW	1 (SOT-363) Both Junction Hea	ted (Note 3)		
P _D	Total Device Dissipation $T_A = 25^{\circ}C \qquad \text{(Note 1)}$ (Note 2) Derate above 25°C (Note 2)	(Note 1)	250 385 2.0 3.0	mW mW/°C
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	493 325	°C/W
$R_{ hetaJL}$	Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	188 208	°C/W
T _J , T _{stg}	Junction and Storage Temperature Range		-55 to +150	°C
NSBC143TDX	(V6 (SOT-563) One Junction He	eated		
P _D	Total Device Dissipation T _A = 25°C (Note 1) Derate above 25°C	(Note 1)	357 2.9	mW mW/°C
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1)	350	°C/W
NSBC143TDX	(V6 (SOT-563) Both Junction H	eated (Note 3)		
P _D	Total Device Dissipation T _A = 25°C (Note 1) Derate above 25°C	(Note 1)	500 4.0	mW mW/°C
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1)	250	°C/W
T _J , T _{stg}	Junction and Storage Temper	ature Range	-55 to +150	°C

FR-4 @ Minimum Pad.
 FR-4 @ 1.0 x 1.0 Inch Pad.
 Both junction heated values assume total power is sum of two equally powered channels.

ELECTRICAL CHARACTERISTICS (T_A = 25°C, common for Q₁ and Q₂, unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS		•		
I _{CBO}	Collector–Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	-	-	100	nAdc
I _{CEO}	Collector–Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	-	_	500	nAdc
I _{EBO}	Emitter-Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_C = 0)$	-	_	1.9	mAdc
V _{(BR)CBO}	Collector–Base Breakdown Voltage ($I_C = 10 \mu A, I_E = 0$)	50	-	_	Vdc
V _{(BR)CEO}	Collector–Emitter Breakdown Voltage (Note 4) (I _C = 2.0 mA, I _B = 0)	50	-	_	Vdc
ON CHARAC	TERISTICS				
h _{FE}	DC Current Gain (Note 4) (I _C = 5.0 mA, V _{CE} = 10 V)	160	350	_	
V _{CE(sat)}	Collector–Emitter Saturation Voltage (Note 4) (I _C = 10 mA, I _B = 1.0 mA)	-	_	0.25	Vdc
$V_{i(off)}$	Input Voltage (off) (V _{CE} = 5.0 V, I _C = 100 μ A)	-	0.6	_	Vdc
V _{i(on)}	Input Voltage (on) (V _{CE} = 0.2 V, I _C = 10 mA)	-	0.9	-	Vdc
V _{OL}	Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω)	-	-	0.2	Vdc
V _{OH}	Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.25 V, R _L = 1.0 k Ω)	4.9	_	_	Vdc
R1	Input Resistor	3.3	4.7	6.1	kΩ
R ₁ /R ₂	Resistor Ratio	-	_	_	

^{4.} Pulsed Condition: Pulse Width = 300 msec, Duty Cycle \leq 2%.

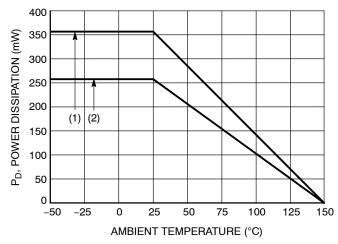


Figure 1. Derating Curve

- (1) SOT-363; 1.0 x 1.0 inch Pad
- (2) SOT-563; Minimum Pad

TYPICAL CHARACTERISTICS MUN5216DW1, NSBC143TDXV6

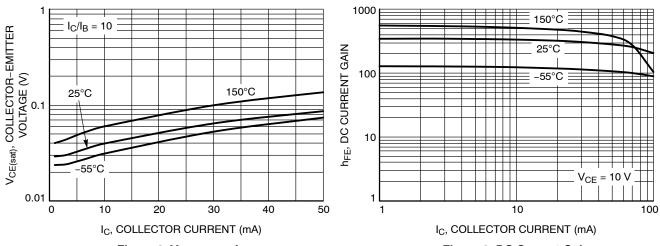


Figure 2. V_{CE(sat)} vs. I_C

Figure 3. DC Current Gain

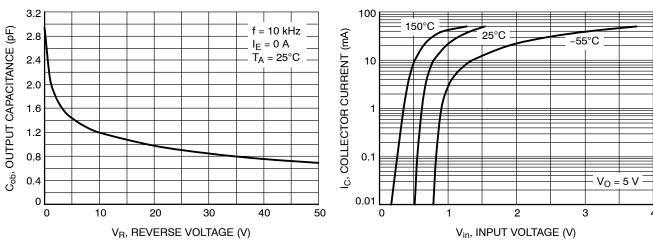


Figure 4. Output Capacitance

Figure 5. Output Current vs. Input Voltage

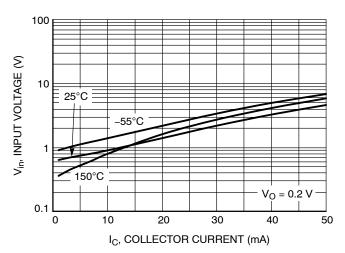


Figure 6. Input Voltage vs. Output Current

ORDERING INFORMATION

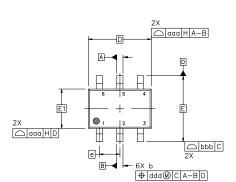
Device	Package	Shipping [†]
MUN5216DW1T1G, SMUN5216DW1T1G	SOT-363	3,000 / Tape & Reel
NSBC143TDXV6T1G	SOT-563	4,000 / Tape & Reel

DISCONTINUED (Note 5)

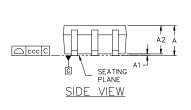
NSBC143TDXV6T5G	SOT-563	8,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.


MECHANICAL CASE OUTLINE

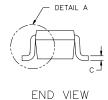
PACKAGE DIMENSIONS

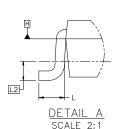

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**

DATE 18 APR 2024

NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
- DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
- DIMENSIONS 6 AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.




6X 0.30 -

6X 0.66

2.50

TOP VIEW

	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
Α			1.10
A1	0.00		0.10
A2	0.70	0.90	1.00
b	0.15	0.20	0.25
С	0.08	0.15	0.22
D	2.00 BSC		
Е	2.10 BSC		
E1	1.25 BSC		
е		0.65 BSC	;
L	0.26	0.36	0.46
L2	0.15 BSC		
aaa	0.15		
bbb	0.30		
ссс	0.10		
ddd		0.10	
ddd		0.10	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code = Date Code*

= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

(Note: Microdot may be in either location)

- *Date Code orientation and/or position may vary depending upon manufacturing location.
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B Electronic versions are uncontrolled except when accessed directly from the Documer Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red		
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65	SC-88 2.00x1.25x0.90, 0.65P	

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z

DATE 18 APR 2024

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 14: PIN 1. VREF 2. GND 3. GND 4. IOUT 5. VEN 6. VCC	STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1	STYLE 16: PIN 1. BASE 1 2. EMITTER 2 3. COLLECTOR 2 4. BASE 2 5. EMITTER 1 6. COLLECTOR 1	STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1	STYLE 18: PIN 1. VIN1 2. VCC 3. VOUT2 4. VIN2 5. GND 6. VOUT1
STYLE 19: PIN 1. I OUT 2. GND 3. GND 4. V CC 5. V EN 6. V REF	STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1	STYLE 22: PIN 1. D1 (i) 2. GND 3. D2 (i) 4. D2 (c) 5. VBUS 6. D1 (c)	STYLE 23: PIN 1. Vn 2. CH1 3. Vp 4. N/C 5. CH2 6. N/C	STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1	STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2	STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE	STYLE 30: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65	SC-88 2.00x1.25x0.90, 0.65P	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

STYLE 1:

PIN 1. EMITTER 1 2. BASE 1

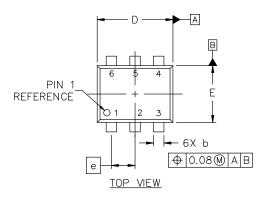
3. COLLECTOR 2

6. COLLECTOR 1

4. EMITTER 2

5. BASE 2

STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR


3. BASE

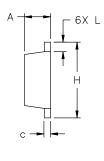
SOT-563-6 1.60x1.20x0.55, 0.50P CASE 463A **ISSUE J**

DATE 15 FEB 2024

NOTES:

- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

STYLE 2:


PIN 1. EMITTER 1

3. BASE 2

5. BASE 1 6. COLLECTOR 1

2. EMITTER 2

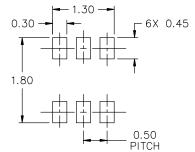
4. COLLECTOR 2

SIDE VIEW

STYLE 3:

PIN 1. CATHODE 1 2. CATHODE 1

STYLE 6: PIN 1. CATHODE 2. ANODE


3. CATHODE

4. CATHODE 5. CATHODE

3. ANDDE/ANDDE 2 CATHODE 2

6. ANDDE/ANDDE 1

DIM	MILLIMETERS			
ויונת	MIN.	N□M.	MAX.	
А	0.50	0.55	0.60	
Ø	0.17	0.22	0.27	
	0.08	0.13	0.18	
D	1.50	1.60	1.70	
Е	1.10	1.20	1.30	
е	0.50 BSC			
Η	1.50	1.60	1.70	
L	0.10	0.20	0.30	

RECOMMENDED MOUNTING FOOTPRINT*

* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

4. EMITTER 5. COLLECTOR 6. COLLECTOR 6. CATHODE 6. CATHODE STYLE 7: STYLE 8: STYLE 9 1. CATHODE PIN 1. DRAIN PIN 1. SOURCE 1 2. DRAIN 2. GATE 1

STYLE 5: PIN 1. CATHODE 2. CATHODE

4. ANDDE 5. CATHODE

3. ANDDE

2. ANDDE 3. CATHODE 4. CATHODE 3. GATE 4. SOURCE 5. DRAIN 3. DRAIN 2 4. SOURCE 2 5. GATE 2 5. ANDDE CATHODE 6. DRAIN DRAIN 1

STYLE 10:	STYLE 11:
PIN 1. CATHODE 1	PIN 1. EMITTER 2
2. N/C	2. BASE 2
3. CATHODE 2	3. COLLECTOR 1
4. ANODE 2	4. EMITTER 1
5. N/C	5. BASE 1
6. AN□DE 1	6. COLLECTOR 2

GENERIC MARKING DIAGRAM*

XX = Specific Device Code M = Month Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	00,101111202	Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	SOT-563-6 1.60x1.20x0.55, 0.50P PAGE		PAGE 1 OF 1

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com