

NSVMMBT3906TT1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NSVMMBT3906TT1G-DG

Manufacturer onsemi

Manufacturer Product Number NSVMMBT3906TT1G

Description TRANS PNP 40V 0.2A SC75 SOT416

Detailed Description Bipolar (BJT) Transistor PNP 40 V 200 mA 250MHz 2

00 mW Surface Mount SC-75, SOT-416

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NSVMMBT3906TT1G	onsemi
Series:	Product Status:
	Active
Transistor Type:	Current - Collector (Ic) (Max):
PNP	200 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
40 V	400mV @ 5mA, 50mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
	100 @ 10mA, 1V
Power - Max:	Frequency - Transition:
200 mW	250MHz
Operating Temperature:	Grade:
-55°C ~ 150°C (TJ)	Automotive
Qualification:	Mounting Type:
AEC-Q101	Surface Mount
Package / Case:	Supplier Device Package:
SC-75, SOT-416	SC-75, SOT-416
Base Product Number:	
NSVMMBT3906	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

8541.21.0075

General Purpose Transistors

PNP Silicon

MMBT3906TT1

This transistor is designed for general purpose amplifier applications. It is housed in the SOT-416/SC-75 package which is designed for low power surface mount applications.

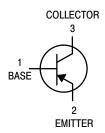
Features

- NSVM Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	-40	Vdc
Collector-Base Voltage	V _{CBO}	-40	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current - Continuous	Ic	-200	mAdc

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1) @T _A = 25°C Derated above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	600	°C/W
Total Device Dissipation, FR-4 Board (Note 2) @T _A = 25°C Derated above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1

- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 × 1.0 Inch Pad

GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

CASE 463 SOT-416/SC-75 STYLE 1

MARKING DIAGRAM

2A = Device Code
M = Date Code*

• = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping _†
MMBT3906TT1G	SOT-416 (Pb-Free)	3000 / Tape & Reel
NSVMMBT3906TT1G	SOT-416 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTI	cs	•	•		•	
Collector – Emitter Brea (I _C = –1.0 mAdc, I _B		V _(BR) CEO	-40	_	Vdc	
Collector – Base Breakd $(I_C = -10 \mu Adc, I_E =$		V _(BR) CBO	-40	_	Vdc	
Emitter – Base Breakdor ($I_E = -10 \mu Adc, I_C =$		V _{(BR)EBO}	-5.0	-	Vdc	
Base Cutoff Current (V _{CE} = -30 Vdc, V _{EI}	₃ = -3.0 Vdc)	I _{BL}	_	-50	nAdc	
Collector Cutoff Current (V _{CE} = -30 Vdc, V _{EI}		I _{CEX}	_	-50	nAdc	
ON CHARACTERISTIC	S (Note 3)	·	•	•	•	
DC Current Gain	_E = −1.0 Vdc) _E = −1.0 Vdc) _E = −1.0 Vdc)	h _{FE}	60 80 100 60 30	- 300 - -	_	
Collector – Emitter Satur ($I_C = -10 \text{ mAdc}, I_B = (I_C = -50 \text{ mAdc}, I_B = -60 \text{ mAdc})$: –1.0 mAdc)	V _{CE(sat)}	_ _	-0.25 -0.4	Vdc	
Base – Emitter Saturation $(I_C = -10 \text{ mAdc}, I_B = 0 \text{ mAdc}$: -1.0 mAdc)	V _{BE(sat)}	-0.65 -	-0.85 -0.95	Vdc	
SMALL-SIGNAL CHA	RACTERISTICS					
Current - Gain - Bandw (I _C = -10 mAdc, V _{CE}	idth Product = = -20 Vdc, f = 100 MHz)	f _T	250	-	MHz	
Output Capacitance $(V_{CB} = -5.0 \text{ Vdc}, I_{E})$	= 0, f = 1.0 MHz)	$C_{ m obo}$	_	4.5	pF	
Input Capacitance1 $(V_{EB} = -0.5 \text{ Vdc}, I_C)$	= 0, f = 1.0 MHz)	C _{ibo}	_	10.0	pF	
Input Impedance (V _{CE} = -10 Vdc, I _C =	= -1.0 mAdc, f = 1.0 kHz)	h _{ie}	2.0	12	kΩ	
Voltage Feedback Ratio (V _{CE} = -10 Vdc, I _C =) = -1.0 mAdc, f = 1.0 kHz)	h _{re}	0.1	10	X 10 ⁻⁴	
Small – Signal Current ((V _{CE} = -10 Vdc, I _C =	Gain = –1.0 mAdc, f = 1.0 kHz)	h _{fe}	100	400	-	
Output Admittance (V _{CE} = -10 Vdc, I _C =	= -1.0 mAdc, f = 1.0 kHz)	h _{oe}	3.0	60	μmhos	
Noise Figure (V _{CE} = -5.0 Vdc, I _C	= –100 μAdc, R _S = 1.0 k Ω, f = 1.0 kHz)	NF	-	4.0	dB	
SWITCHING CHARAC	TERISTICS					
Delay Time	(V _{CC} = -3.0 Vdc, V _{BE} = 0.5 Vdc)	t _d	_	35		
Rise Time	$(I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	t _r	-	35	ns	
Storage Time	$(V_{CC} = -3.0 \text{ Vdc}, I_C = -10 \text{ mAdc})$	t _s	-	225	ns	
Fall Time	$(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$	t _f – 75				

^{3.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

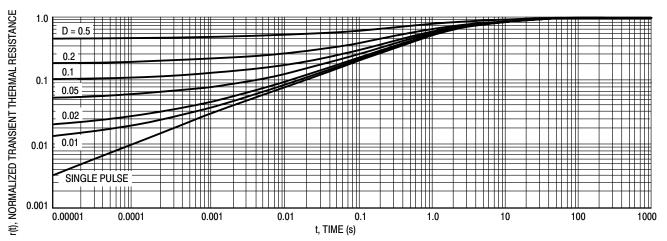
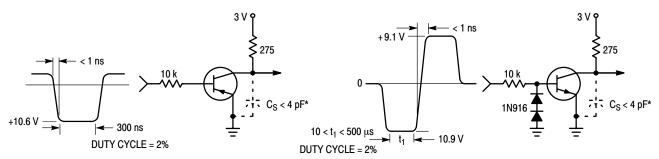



Figure 1. Normalized Thermal Response

* Total shunt capacitance of test jig and connectors

Figure 2. Delay and Rise Time Equivalent Test Circuit

Figure 3. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

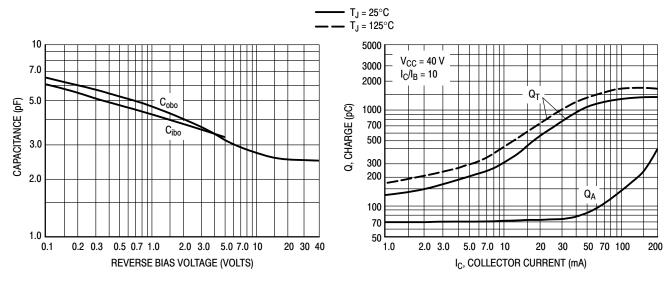


Figure 4. Capacitance

Figure 5. Charge Data

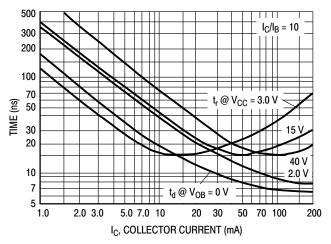


Figure 6. Turn - On Time

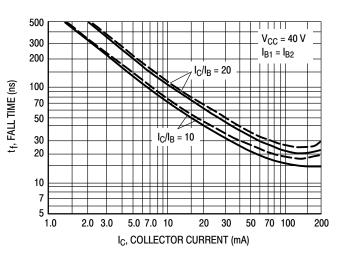
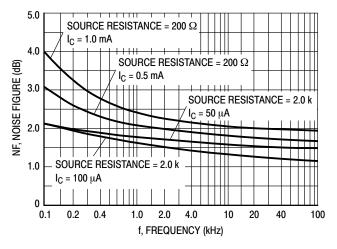



Figure 7. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE VARIATIONS**

 $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

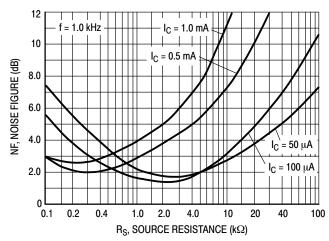
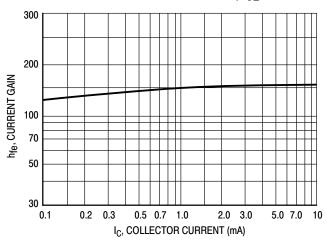



Figure 8.

Figure 9.

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

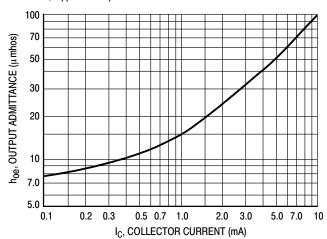
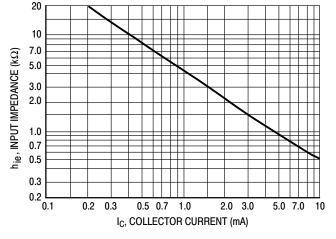



Figure 10. Current Gain

Figure 11. Output Admittance

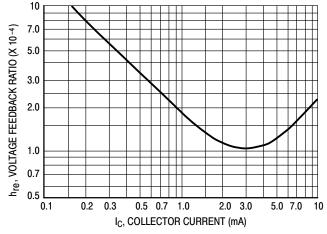


Figure 12. Input Impedance

Figure 13. Voltage Feedback Ratio

STATIC CHARACTERISTICS

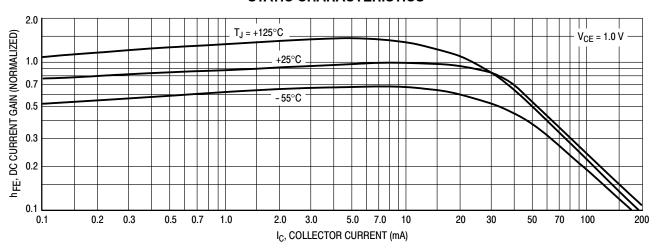


Figure 14. DC Current Gain

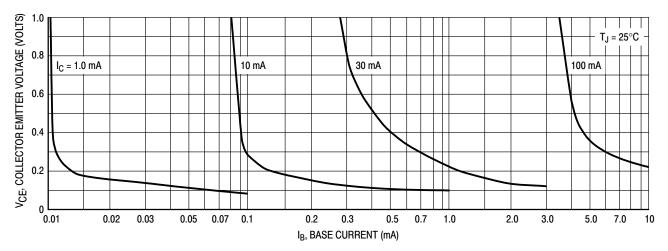


Figure 15. Collector Saturation Region

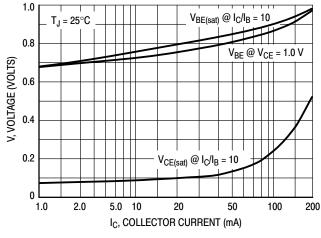


Figure 16. "ON" Voltages

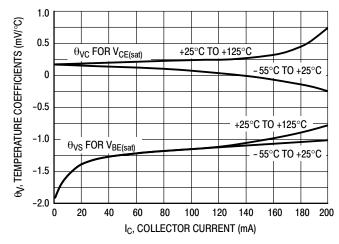


Figure 17. Temperature Coefficients

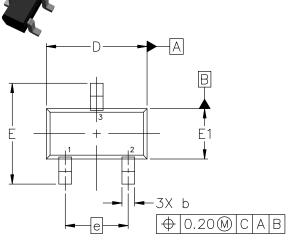
MECHANICAL CASE OUTLINE

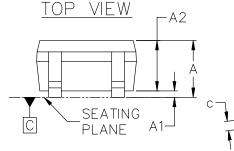
PACKAGE DIMENSIONS

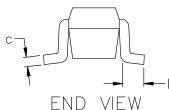
SC75-3 1.60x0.80x0.80, 1.00P

CASE 463 ISSUE H

DATE 01 FEB 2024


NOTES:


- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.


DIM	MILLIMETERS		
DIIVI	MIN.	NOM.	MAX.
А	0.70	0.80	0.90
A1	0.00	0.05	0.10
A2	(0.80 REF	
Ь	0.15	0.20	0.30
С	0.10	0.15	0.25
D	1.55	1.60	1.65
E	1.50	1.60	1.70
E1	0.70	0.80	0.90
е	1.00 BSC		
L	0.10	0.15	0.20

-0.356

0.787

GENERIC MARKING DIAGRAM*

SIDE VIEW

XX = Specific Device Code

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	
PIN 1. BASE	
EMITTER	

3. COLLECTOR

STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3 CATHODE

RECOMMENDED MOUNTING FOOTPRINT* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES

1.803

0.508

REFERENCE MANUAL, SOLDERRM/D.

1.000

STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
3. ANODE

STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

DOCUMENT NUMBER:	98ASB15184C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC75-3 1.60x0.80x0.80. 1.0	00P	PAGE 1 OF 1

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com