

NTB5605T4G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number N

NTB5605T4G-DG

Manufacturer

onsemi

Manufacturer Product Number

NTB5605T4G

Description

MOSFET P-CH 60V 18.5A D2PAK

Detailed Description

P-Channel 60 V 18.5A (Ta) 88W (Tc) Surface Mount

D2PAK

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NTB5605T4G	onsemi
Series:	Product Status:
	Obsolete
FET Type:	Technology:
P-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
60 V	18.5A (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
5V	140mOhm @ 8.5A, 5V
Vgs(th) (Max) @ Id:	Gate Charge (Qg) (Max) @ Vgs:
2V @ 250μA	22 nC @ 5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	1190 pF @ 25 V
FET Feature:	Power Dissipation (Max):
	88W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 175°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
D2PAK	TO-263-3, D2PAK (2 Leads + Tab), TO-263AB
Base Product Number:	
NTB56	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8541.29.0095

MOSFET – Power, P-Channel, D²PAK

-60 V, -18.5 A

Features

- Designed for Low R_{DS(on)}
- Withstands High Energy in Avalanche and Commutation Modes
- AEC Q101 Qualified NTBV5605
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supplies
- PWM Motor Control
- Converters
- Power Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	-60	V
Gate-to-Source Voltage	9		V _{GS}	±20	V
Continuous Drain Current (Note 1)	Steady State	T _A = 25°C	I _D	-18.5	Α
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	88	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	-55	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 175	ů
Single Pulse Drain-to–Source Avalanche Energy (V _{DD} = 25 V, V _{GS} = 5.0 V, I _{PK} = 15 A, L = 3.0 mH, R _G = 25 Ω)			E _{AS}	338	mJ
Lead Temperature for Soldering Purposes (1/8 in from case for 10 s)			TL	260	°C

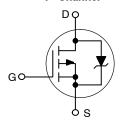
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) - Steady State	$R_{ heta JC}$	1.7	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. When surface mounted to an FR4 board using 1" pad size (Cu Área 1.127 in²).
- When surface mounted to an FR4 board using the minimum recommended pad size (Cu Area 0.41 in²).

1

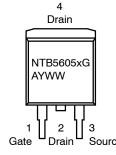


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
-60 V	120 mΩ @ -5.0 V	–18.5 A

P-Channel



MARKING DIAGRAM & PIN ASSIGNMENT

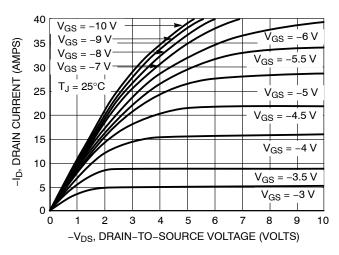
Х

= P or blank

A = Assembly Location Y = Year

WW = Work Week
G = Pb-Free Package

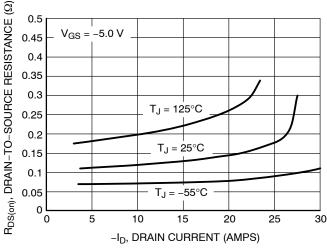
ORDERING INFORMATION


Device	Package	Shipping [†]
NTB5605PT4G	D ² PAK (Pb-Free)	800 / Tape & Reel
NTBV5605T4G	D ² PAK (Pb-Free)	800 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•			•	1	•
Drain-to-Source Breakdown Voltage	$V_{(Br)DSS}$	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(Br)DSS} /T _J				-64		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V	T _J = 25°C			-1.0	μΑ
		$V_{DS} = -60 \text{ V}$	T _J = 125°C			-10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{G}$	iS = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_{D}$	= -250 μA	-1.0	-1.5	-2.0	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -5.0 \text{ V},$ $V_{GS} = -5.0 \text{ V},$			120 140	140	mΩ
Forward Transconductance	9FS	$V_{DS} = -10 \text{ V},$	I _D = -8.5 A		12		S
Drain-to-Source On Voltage	V _{DS(on)}	$V_{GS} = -5.0 \text{ V},$	I _D = -8.5 A			-1.3	V
CHARGES, CAPACITANCES AND GATE RE	SISTANCE	-					
Input Capacitance	C _{iss}				730	1190	
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = V _{DS} = -	= 1.0 MHz, -25 V		211	300	pF
Reverse Transfer Capacitance	C _{rss}	VDS = -25 V			67	120	1
Total Gate Charge	Q _{G(TOT)}				13	22	
Gate-to-Source Charge	Q_{GS}	$V_{GS} = -5.0 \text{ V}, V_{DS} = -48 \text{ V},$ $I_D = -17 \text{ A}$			4.0		nC
Gate-to-Drain Charge	Q_{GD}				7.0		
SWITCHING CHARACTERISTICS (Note 4)		-					
Turn-On Delay Time	t _{d(on)}				12.5	25	
Rise Time	t _r	V _{GS} = -5.0 V, \	/nn = -30 V.		122	183	1
Turn-Off Delay Time	t _{d(off)}	$I_D = -17 A, F$			29	58	ns
Fall Time	t _f				75	150	1
DRAIN-SOURCE DIODE CHARACTERISTIC	S	-					
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V	T _J = 25°C		-1.55	-2.5	V
		$I_{S} = -17 A$	T _J = 125°C		-1.4		1
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -17 \text{ A}$			60		
Charge Time	ta				39		ns
Discharge Time	t _b				21		1
Reverse Recovery Charge	Q _{RR}				0.14		nC


Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

 $V_{DS} = -10 \text{ V}$ $T_J = -55^{\circ}C$ -ID, DRAIN CURRENT (AMPS) $T_J = 25^{\circ}C$ 30 = 125°C 20 10 0 6 2 3 4 5 8 9 -V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

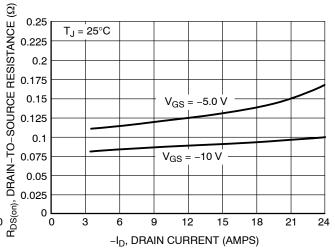
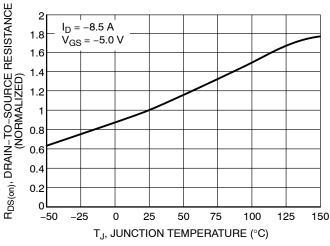



Figure 3. On-Resistance vs. Drain Current and Temperature

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

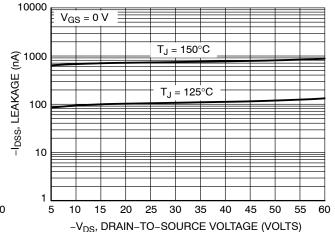


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

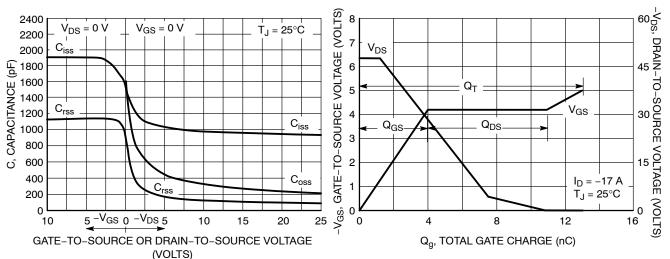


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

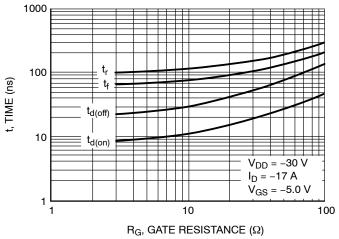


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

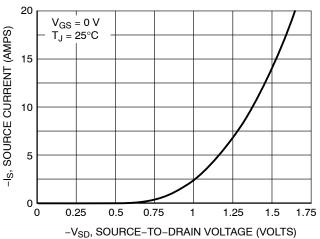


Figure 10. Diode Forward Voltage vs. Current

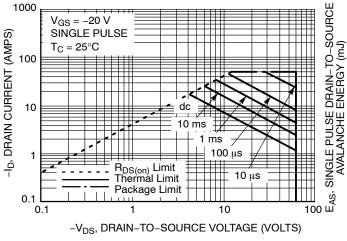


Figure 11. Maximum Rated Forward Biased Safe Operating Area

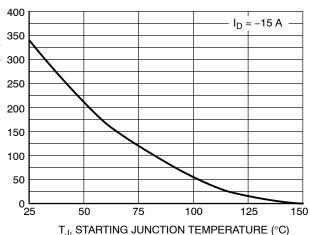


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

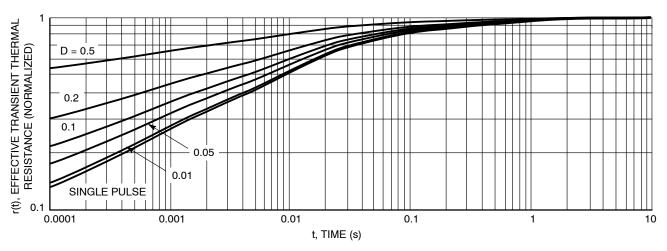


Figure 13. Thermal Response

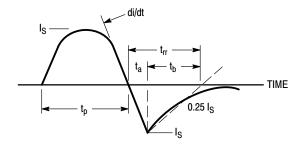
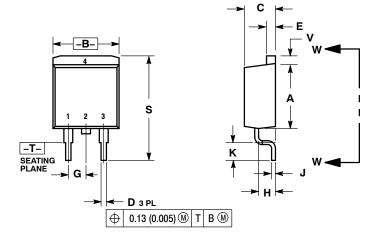
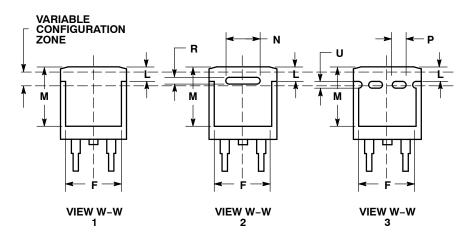


Figure 14. Diode Reverse Recovery Waveform

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

D²PAK 3 CASE 418B-04 **ISSUE L**


DATE 17 FEB 2015

SCALE 1:1

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
Е	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
М	0.280	0.320	7.11	8.13
N	0.197 REF		5.00	REF
Р	0.079 REF		2.00 REF	
R	0.039 REF		0.99	REF
S	0.575	0.625	14.60	15.88
٧	0.045	0.055	1.14	1.40

STYLE 1: PIN 1. BASE 2. COLLECTOR
3. EMITTER
4. COLLECTOR STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 3:

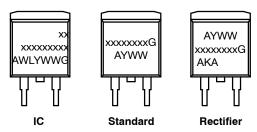
STYLE 4: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

STYLE 5: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 6: PIN 1. NO CONNECT 2. CATHODE 3. ANODE 4. CATHODE

MARKING INFORMATION AND FOOTPRINT ON PAGE 2

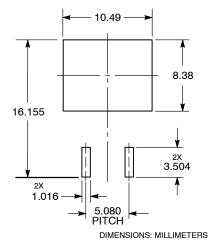

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Documer Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red		
DESCRIPTION:	D ² PAK 3		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

D²PAK 3 CASE 418B-04 ISSUE L

DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*



xx = Specific Device Code A = Assembly Location

WL = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package
AKA = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"		
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

 \Diamond

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com