

NTD23N03RT4 Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NTD23N03RT4-DG

Manufacturer onsemi

Manufacturer Product Number NTD23N03RT4

Description MOSFET N-CH 25V 3.8A/17.1A DPAK

Detailed Description N-Channel 25 V 3.8A (Ta), 17.1A (Tc) 1.14W (Ta), 22

.3W (Tc) Surface Mount DPAK

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NTD23N03RT4	onsemi
Series:	Product Status:
	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
25 V	3.8A (Ta), 17.1A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
4V, 5V	45m0hm @ 6A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
2V @ 250μA	3.76 nC @ 4.5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	225 pF @ 20 V
FET Feature:	Power Dissipation (Max):
	1.14W (Ta), 22.3W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
DPAK	TO-252-3, DPAK (2 Leads + Tab), SC-63
Base Product Number:	
NTD22	

Environmental & Export classification

8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Power MOSFET

23 A, 25 V, N-Channel DPAK

Features

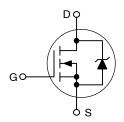
- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low Ciss to Minimize Driver Loss
- Low Gate Charge
- Optimized for High Side Switching Requirements in High-Efficiency DC-DC Converters
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	25	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc
Thermal Resistance, Junction-to-Case Total Power Dissipation @ T _C = 25°C Drain Current	R _{θJC} P _D	5.6 22.3	°C/W W
 Continuous @ T_C = 25°C, Chip Continuous @ T_C = 25°C, Limited by Package 	I _D I _D	23 17.1	A A
- Single Pulse	I _{DM}	40	Α
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	76	°C/W
Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C	P _D I _D	1.64 4.5	W A
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	110	°C/W
Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C	P _D I _D	1.14 3.8	W A
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

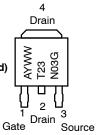
- 1. When surface mounted to an FR4 board using 0.5 sq in pad size.
- When surface mounted to an FR4 board using minimum recommended pad size.



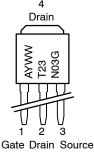
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
25 V	32 m Ω	23 A


N-CHANNEL

MARKING DIAGRAMS

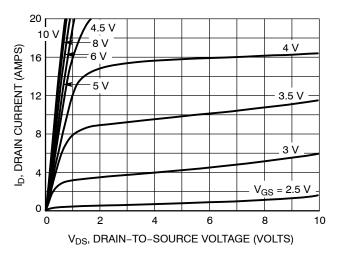


DPAK
CASE 369AA
(Surface Mounted)
STYLE 2

DPAK-3 CASE 369D (Straight Lead) STYLE 2

T23N03 = Device Code A = Assembly Location

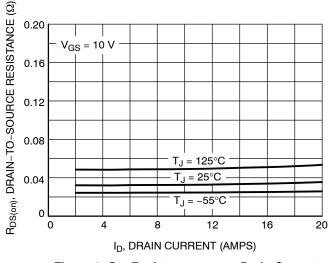
Y = Year
WW = Work Week
G = Pb-Free Package


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Cha	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS			•			
Drain-to-Source Breakdown Voltag (V _{GS} = 0 Vdc, I _D = 250 μA Temperature Coefficient (Positive)	V(br) _{DSS}	25 -	28 -	- -	Vdc mV/°C	
Zero Gate Voltage Drain Current $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ V})$ $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ V})$	(dc) (dc, T _J = 150°C)	I _{DSS}	- -	_ _	1.0 10	μAdc
Gate-Body Leakage Current (V _{GS} = ±20 Vdc, V _{DS} = 0	Vdc)	I _{GSS}	-	-	±100	nAdc
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 250 \mu Ad$ Threshold Temperature Coefficient (c) Negative)	V _{GS(th)}	1.0	1.8	2.0 -	Vdc mV/°C
Static Drain-to-Source On-Resista $(V_{GS} = 4.5 \text{ Vdc}, I_D = 6 \text{ Add})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 6 \text{ Add})$	R _{DS(on)}	- -	50.3 32.3	60 45	mΩ	
Forward Transconductance (Note 3) (V _{DS} = 10 Vdc, I _D = 6 Add	9FS	_	13	_	Mhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	225	_	pF
Output Capacitance	$(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ V, f} = 1 \text{ MHz})$	C _{oss}	-	108	_	
Transfer Capacitance		C _{rss}	-	48	_	
SWITCHING CHARACTERISTICS	(Note 4)					
Turn-On Delay Time		t _{d(on)}	-	2.0	-	ns
Rise Time	(V _{GS} = 10 Vdc, V _{DD} = 10 Vdc,	t _r	-	14.9	_	
Turn-Off Delay Time	$I_D = 6 \text{ Adc}, R_G = 3 \Omega)$	t _{d(off)}	-	9.9	_	
Fall Time		t _f	-	2.0	-	1
Gate Charge		Q_T	-	3.76	-	nC
	$(V_{GS} = 4.5 \text{ Vdc}, I_D = 6 \text{ Adc}, V_{DS} = 10 \text{ Vdc})$ (Note 3)	Q ₁	-	1.7	-	1
	V _{DS} = 10 VdS) (Note 5)		-	1.6	-	
SOURCE-DRAIN DIODE CHARAC	TERISTICS					
Forward On-Voltage	$(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 3)}$ $(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}	_ _	0.87 0.74	1. <u>2</u> –	Vdc
Reverse Recovery Time		t _{rr}	-	8.7	-	ns
	(I _S = 6 Adc, V _{GS} = 0 Vdc,	ta	-	5.2	-	
	dl _S /dt = 100 A/μs) (Note 3)	t _b	-	3.5	-	
Reverse Recovery Stored Charge		Q _{RR}	-	0.003	_	μC


Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

20 V_{DS} ≥ 10 V NIVBU 12 12 13 14 T_J = 25°C T_J = -55°C 0 0 1 2 3 4 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

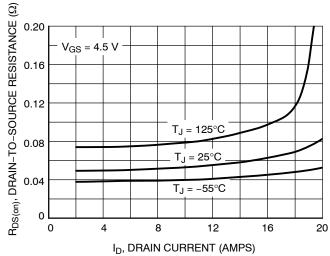
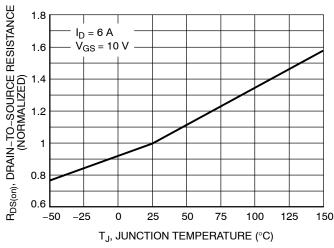



Figure 3. On-Resistance versus Drain Current and Temperature

Figure 4. On-Resistance versus Drain Current and Temperature

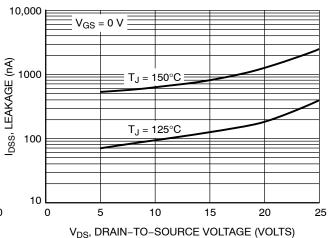


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

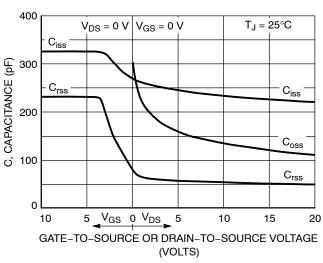


Figure 7. Capacitance Variation

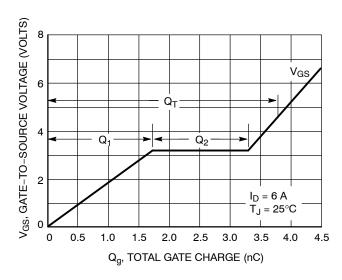


Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

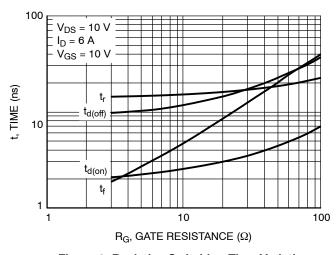


Figure 9. Resistive Switching Time Variation versus Gate Resistance

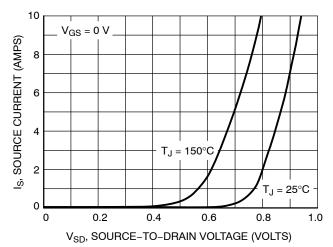


Figure 10. Diode Forward Voltage versus Current

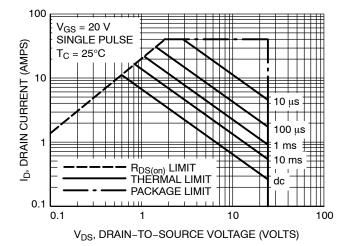


Figure 11. Maximum Rated Forward Biased Safe Operating Area

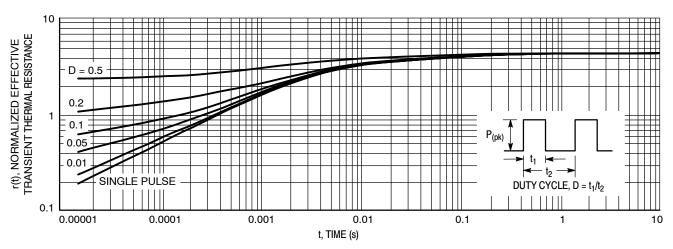


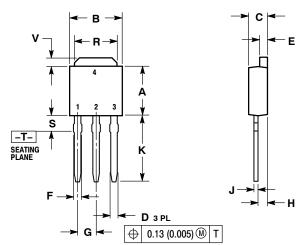
Figure 12. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD23N03RG	DPAK (Pb-Free)	75 Units/Rail
NTD23N03R-1G	DPAK-3 (Pb-Free)	75 Units/Rail
NTD23N03RT4	DPAK	2500 Tape & Reel
NTD23N03RT4G	DPAK (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

DPAK INSERTION MOUNT

CASE 369 ISSUE O

DATE 02 JAN 2000

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

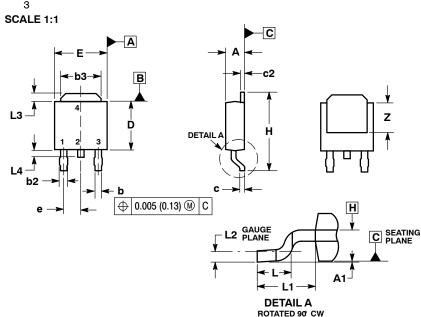
	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090 BSC		2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
V	0.030	0.050	0.77	1 27

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS


DPAK (SINGLE GUAGE) CASE 369AA **ISSUE B**

DATE 03 JUN 2010

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108 REF		2.74	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

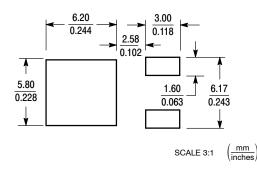
STYLE 1: PIN 1. BASE

2. COLLECTOR 3. EMITTER 4. COLLECTOR

STYLE 2: PIN 1. GATE

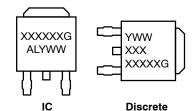
2. DRAIN 3. SOURCE 4. DRAIN

STYLE 3: PIN 1. ANODE


2. CATHODE 3. ANODE CATHODE

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE


STYLE 6: PIN 1. MT1 2. MT2 3. GATE STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER COLLECTOR

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Reported versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1		

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com