

NTD85N02R Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	NTD85N02R-DG
Manufacturer	onsemi
Manufacturer Product Number	NTD85N02R
Description	MOSFET N-CH 24V 12A/85A DPAK
Detailed Description	N-Channel 24 V 12A (Ta), 85A (Tc) 1.25W (Ta), 78.1 W (Tc) Surface Mount DPAK

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

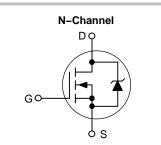
Purchase and inquiry

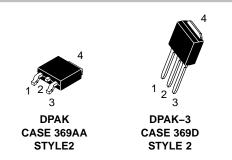
Manufacturer Product Number:	Manufacturer:
NTD85N02R	onsemi
Series:	Product Status:
	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (ld) @ 25°C:
24 V	12A (Ta), 85A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
4.5V, 10V	5.2mOhm @ 20A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
2V @ 250µA	17.7 nC @ 5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	2050 pF @ 20 V
FET Feature:	Power Dissipation (Max):
	1.25W (Ta), 78.1W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
DPAK	TO-252-3, DPAK (2 Leads + Tab), SC-63
Base Product Number:	
NTD85	

Environmental & Export classification

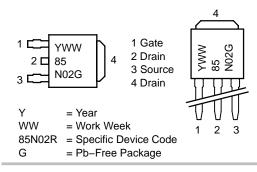
RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

NTD85N02R


Power MOSFET, 85 A, 24 V, **N-Channel DPAK/IPAK**



ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
24 V	5.2 mΩ @ 10 V	85 A

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Features

- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Low Gate Charge to Minimize Switching Losses
- Pb–Free Packages are Available

Applications

- CPU Power Delivery
- DC–DC Converters
- Low Side Switching

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Para	ameter		Symbol	Value	Unit
Drain-to-Source Vo	ltage		V _{DSS}	24	V
Gate-to-Source Vol	tage		V _{GS}	±20	V
Continuous Drain		$T_A = 25^{\circ}C$	۱ _D	17	A
Current R _{θJA} (Note 1)		T _A = 85°C		12	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	PD	2.4	W
Continuous Drain	1	$T_A = 25^{\circ}C$	I _D	12	А
Current R _{0JA} (Note 2)	Steady State	T _A = 85°C		8.8	
Power Dissipation $R_{\theta JA}$ (Note 2)	Slale	T _A = 25°C	PD	1.25	W
Continuous Drain Current R _{BJC}		$T_{C} = 25^{\circ}C$	۱ _D	85	A
(Note 1)		T _C = 85°C		58	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	78.1	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10\mu s$		I _{DM}	192	A
Current Limited by F	Package	$T_A = 25^{\circ}C$	I _{DmaxPkg}	45	А
Operating Junction a Temperature	and Storage)	T _J , T _{STG}	–55 to +150	°C
Source Current (Boo	ly Diode)		ا _S	78	А
Drain to Source dV/d	dV/dt	6	V/ns		
Energy T _J = 25°C, V	Single Pulse Drain–to–Source Avalanche Energy T _J = 25°C, V _{DD} = 30 V, V _{GS} = 10 V, I _L = 13 A _{pk} , L = 1.0 mH, R _G = 25 Ω)				mJ
Lead Temperature for (1/8" from case for 1		Purposes	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

2. Surface-mounted on FR4 board using the minimum recommended pad size.

NTD85N02R

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	1.6	°C/W
Junction-to-TAB (Drain)	$R_{\thetaJC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{ hetaJA}$	52	
Junction-to-Ambient - Steady State (Note 2)	$R_{ hetaJA}$	100	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	-	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		24	28		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				20.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	T _J = 25 °C			1.5	
		V _{DS} = 24 V	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	s = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$		1.0	1.5	2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4		mV/°C
Drain-to-Source on Resistance	R _{DS(ON)}	V _{GS} = 10 V	I _D = 20 A		4.8	5.2	
		$V_{GS} = 4.5 V$	I _D = 20 A		6.5		mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _I	_D = 15 A		38		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				2050		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 M	Hz, V _{DS} = 20 V		871		pF
Reverse Transfer Capacitance	C _{RSS}				359		
Total Gate Charge	Q _{G(TOT)}				17.7		
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 5.0 V, V _{DS} = 10 V; I _D = 10 A			1.6		1
Gate-to-Source Charge	Q _{GS}				2.6		nC
Gate-to-Drain Charge	Q _{GD}				7.1		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _D I _D = 10			35.1		nC

SWITCHING CHARACTERISTICS (Note 4)

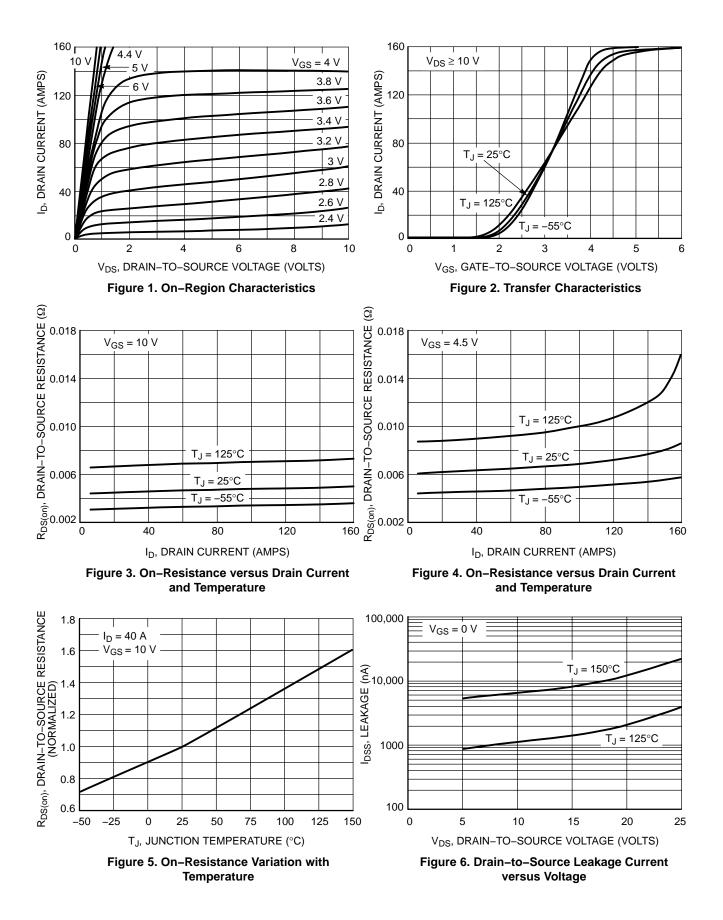
Turn-On Delay Time	t _{d(ON)}		6.3	
Rise Time	t _r	V _{GS} = 10 V, V _{DS} = 10 V,	77	
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 30$ A, $R_{\rm G} = 3.0 \ \Omega$	25	ns
Fall Time	t _f		12	

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

NTD85N02R

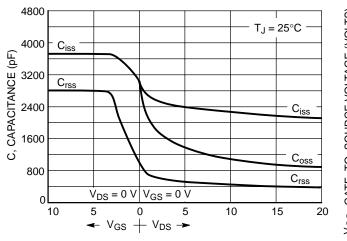
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

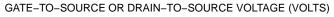
Parameter	Symbol	Test Cond	Test Condition		Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTE	RISTICS	• •					
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.81	1.0	N
		V _{GS} = 0 V, I _S = 30 A	T _J = 125°C		0.65		V
Reverse Recovery Time	t _{RR}				37.5		
Charge Time	t _a	V _{GS} = 0 V, dIS/dt		16.8		ns	
Discharge Time	t _b	I _S = 20 A			20.7		
Reverse Recovery Charge	Q _{RR}			27		nC	
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				2.49		nH
Drain Inductance, DPAK	LD	T _A = 25°C			0.0164		
Drain Inductance, IPAK*	LD				1.88		
Gate Inductance	L _G				3.46		1
Gate Resistance	R _G				1.2		Ω


*Assume standoff of 110 mils.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD85N02R	DPAK	
NTD85N02RG	DPAK (Pb-Free)	75 Units / Rail
NTD85N02R-001	IPAK	
NTD85N02R-1G	IPAK (Pb–Free)	800 / Tape & Reel
NTD85N02RT4	DPAK	
NTD85N02RT4G	DPAK (Pb-Free)	2500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


NTD85N02R

NTD85N02R

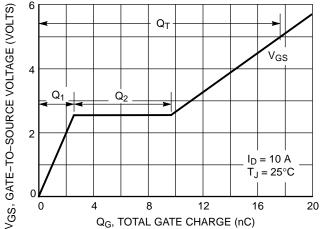
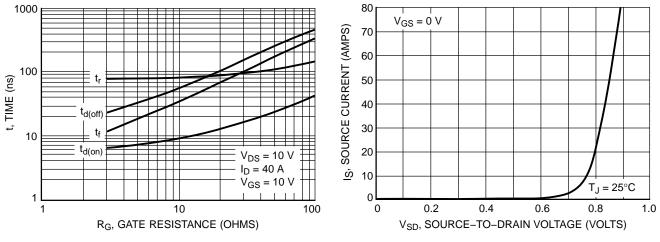



Figure 8. Gate–To–Source and Drain–To–Source Voltage versus Total Charge

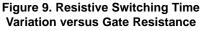


Figure 10. Diode Forward Voltage versus Current

http://onsemi.com 5

NTD85N02R

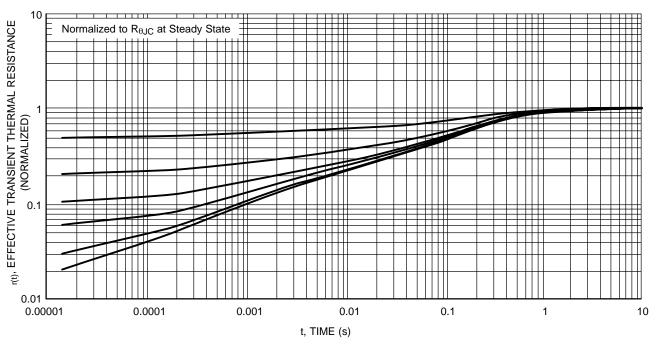
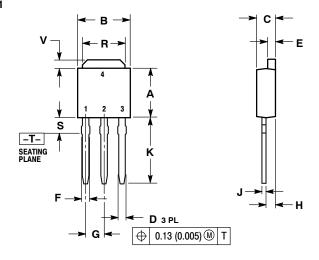


Figure 12. Thermal Response

Figure 13. Thermal Response

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

DPAK INSERTION MOUNT CASE 369 ISSUE O

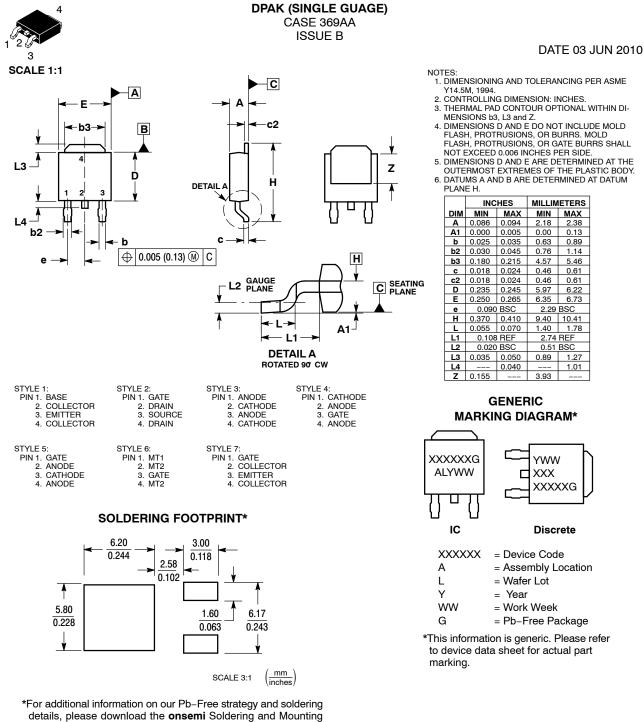
DATE 02 JAN 2000

SCALE 1:1

	NTROLLING DIMENSION: INCH.						
	INC	HES	MILLIN	ETERS			
DIM	MIN	MAX	MIN	MAX			
Α	0.235	0.250	5.97	6.35			
В	0.250	0.265	6.35	6.73			
C	0.086	0.094	2.19	2.38			
D	0.027	0.035	0.69	0.88			
E	0.033	0.040	0.84	1.01			
F	0.037 0.047 0.94		1.19				
G	0.090 BSC 2.29 BSC			BSC			
H	0.034	0.040	0.87	1.01			
J	0.018	0.023	0.46	0.58			
K	0.350	0.380	8.89	9.65			
R	0.175	0.215	4.45	5.46			
S	0.050	0.090	1.27	2.28			
v	0.030	0.050	0.77	1.27			

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2


DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

semi

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

Techniques Reference Manual, SOLDERRM/D.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98AON13126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION: DPAK (SINGLE GAUGE)** PAGE 1 OF 1

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any dovices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable atorney fees arising out of, directly or indirectly, any claim of pers

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>	<section-header><section-header></section-header></section-header>	
Image: State	With With With With With With With With	Hand and a set of the	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.