

NTF2955T1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NTF2955T1G-DG

Manufacturer onsemi

Manufacturer Product Number NTF2955T1G

Description MOSFET P-CH 60V 1.7A SOT223

Detailed Description P-Channel 60 V 1.7A (Ta) 1W (Ta) Surface Mount SO

T-223 (TO-261)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NTF2955T1G	onsemi
Series:	Product Status:
	Active
FET Type:	Technology:
P-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
60 V	1.7A (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
10V	185m0hm @ 2.4A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
4V @ 1mA	14.3 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	492 pF @ 25 V
FET Feature:	Power Dissipation (Max):
	1W (Ta)
Operating Temperature:	Mounting Type:
-55°C ~ 175°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
SOT-223 (TO-261)	TO-261-4, TO-261AA
Base Product Number:	
NTF2955	

Environmental & Export classification

8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

MOSFET – Power, Single, P-Channel, SOT-223

-60 V, -2.6 A

NTF2955, NVF2955

Features

- Design for low R_{DS(on)}
- Withstands High Energy in Avalanche and Commutation Modes
- AEC-Q101 Qualified NVF2955
- These Devices are Pb-Free and are RoHS Compliant

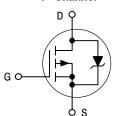
Applications

- Power Supplies
- PWM Motor Control
- Converters
- Power Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	-60	V		
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain	Steady	T _A = 25°C	I _D	-2.6	Α
Current (Note 1)	State	T _A = 85°C		-2.0	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	2.3	W
Continuous Drain	Steady	T _A = 25°C	I _D	-1.7	Α
Current (Note 2)	State	T _A = 85°C		-1.3	
Power Dissipation (Note 2)		T _A = 25°C		1.0	W
Pulsed Drain Current	tp =	: 10 μs	I _{DM}	-17	Α
Operating Junction and St	T _J , T _{STG}	–55 to 175	°C		
Single Pulse Drain-to-Sol Energy (V_{DD} = 25 V, V_{G} = L = 10 mH, R_{G} = 25 Ω)	EAS	225	mJ		
Lead Temperature for Solo (1/8" from case for 10 second		ooses	TL	260	°C

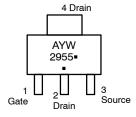
THERMAL RESISTANCE RATINGS


Parameter	Symbol	Max	Unit
Junction-to-Tab (Drain) - Steady State (Note 2)	$R_{\theta JC}$	14	
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	65	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	150	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. When surface mounted to an FR4 board using 1 in. pad size (Cu. area = 1.127 in² [1 oz] including traces)
- When surface mounted to an FR4 board using the minimum recommended pad size (Cu. area = 0.341 in²)

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(on)} TYP	
-60 V	145 mΩ @ –10 V	-2.6 A


P-Channel

MARKING DIAGRAM AND PIN ASSIGNMENT

SOT-223 CASE 318E STYLE 3

A = Assembly Location

′ = Year

W = Work Week

■ = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTF2955T1G	SOT-223 (Pb-Free)	1000 /Tape & Reel
NVF2955T1G	SOT-223 (Pb-Free)	1000/ Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T₁=25°C unless otherwise stated)

Parameter	Symbol	Test Co	ndition	Min	Тур	Max	Unit
OFF CHARACTERISTICS		_					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-60	-	_	٧
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J			-	66.4	_	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C	-	-	-1.0	μΑ
		V _{DS} = -60 V	T _J = 125°C	-	-	-50	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V$	V _{GS} = ±20 V	-	-	±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = -1.0 mA	-2.0	-	-4.0	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V	, I _D = -0.75 A	-	145	170	mΩ
		V _{GS} = -10 \	/, I _D = -1.5 A	-	150	180	
		V _{GS} = -10 \	/, I _D = -2.4 A	-	154	185	
Forward Transconductance	9 _{FS}	V _{GS} = -15 V	, I _D = -0.75 A	-	1.77		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V		-	492	_	pF
Output Capacitance	Coss			_	165	-	
Reverse Transfer Capacitance	C _{RSS}			_	50	-	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 30 V, I _D = 1.5 A		-	14.3	-	nC
Threshold Gate Charge	Q _{G(TH)}	l _D =	1.5 A	_	1.2	-	
Gate-to-Source Charge	Q _{GS}			_	2.3	-	
Gate-to-Drain Charge	Q_GD			-	5.2	_	
SWITCHING CHARACTERISTICS (Note 4	l)						
Turn-On Delay Time	t _{d(ON)}	V _{GS} = 10 V,	V _{DD} = 25 V,	-	11	_	ns
Rise Time	t _r	I _D = 1.5 A, R _L =	$R_G = 9.1 \Omega$ 25 Ω	-	7.6	_	
Turn-Off Delay Time	t _{d(OFF)}	1		_	65	-	1
Fall Time	t _f	1		_	38	-	
DRAIN-SOURCE DIODE CHARACTERIS	TICS			-			
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C	-	-1.10	-1.30	V
		I _S = 1.5 A	T _J = 125°C	-	-0.9	_	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S	/dt = 100 A/μs,	-	36	_	ns
Charge Time	ta	I _S =	1.5 A	-	20	_	
Discharge Time	t _b	1		_	16	-	
Reverse Recovery Charge	Q _{RR}	1		_	0.139	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: pulse width ≤ 300μs, duty cycle ≤ 2%.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C UNLESS OTHERWISE NOTED)

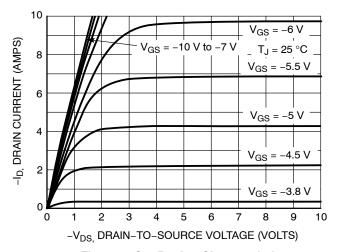


Figure 1. On-Region Characteristics

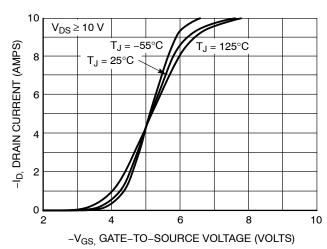


Figure 2. Transfer Characteristics

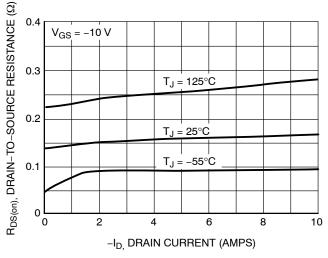


Figure 3. On-Resistance versus Drain Current and Temperature

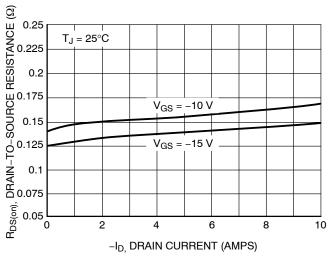
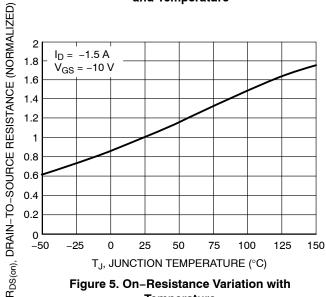



Figure 4. On-Resistance versus Drain Current and Gate Voltage

Temperature

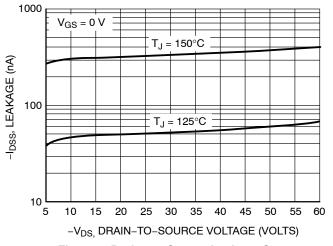



Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL PERFORMANCE CURVES (T, = 25°C UNLESS OTHERWISE NOTED)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

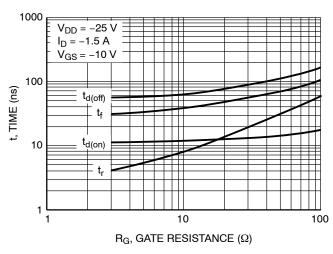
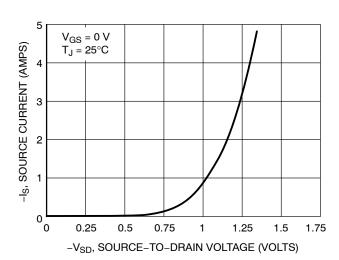



Figure 9. Resistive Switching Time Variation versus Gate Resistance

Drain-to-Source Voltage versus Total Charge

Figure 10. Diode Forward Voltage versus Current

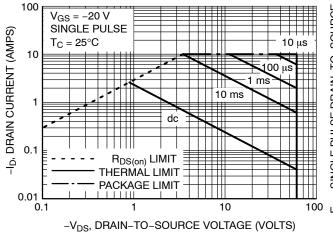


Figure 11. Maximum Rated Forward Biased Safe Operating Area

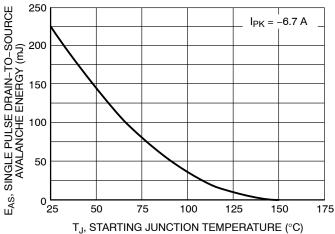


Figure 12. Maximum Avalanche Energy versus **Starting Junction Temperature**

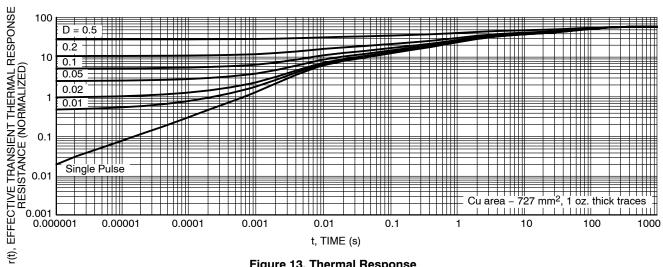
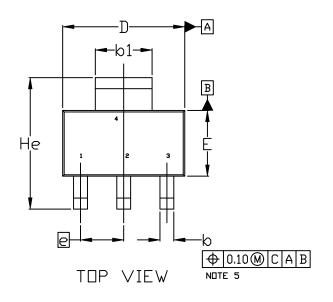
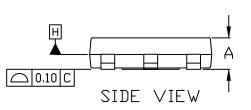
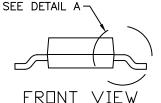
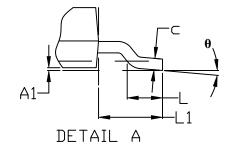


Figure 13. Thermal Response

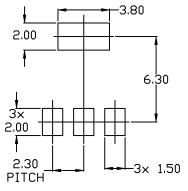

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS




SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



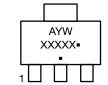
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- POSITIONAL TOLERANCE APPLIES TO DIMENSIONS b AND b1.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
Ø	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
U	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е		2,30 BSC	,	
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING **FOOTPRINT**

	DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
Γ	DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE
4. COLLECTOR	4. CATHODE	4. DRAIN	4. DRAIN	4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

XXXXX = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	ASB42680B Electronic versions are uncontrolled except when accessed directly from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com