

NTJD4158CT1G Datasheet

www.digi-electronics.com

М

DiGi Electronics Part Number	NTJD4158CT1G-DG
Manufacturer	onsemi
1anufacturer Product Number	NTJD4158CT1G
Description	MOSFET N/P-CH 30V/20V SC88
Detailed Description	Mosfet Array 30V, 20V 250mA, 880mA 270mW Surfa ce Mount SC-88/SC70-6/SOT-363

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NTJD4158CT1G	onsemi
Series:	Product Status:
	Active
Technology:	Configuration:
MOSFET (Metal Oxide)	N and P-Channel
FET Feature:	Drain to Source Voltage (Vdss):
Logic Level Gate	30V, 20V
Current - Continuous Drain (ld) @ 25°C:	Rds On (Max) @ ld, Vgs:
250mA, 880mA	1.50hm @ 10mA, 4.5V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
1.5V @ 100µA	1.5nC @ 5V
Input Capacitance (Ciss) (Max) @ Vds:	Power - Max:
33pF @ 5V	270mW
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Package / Case:	Supplier Device Package:
6-TSSOP, SC-88, SOT-363	SC-88/SC70-6/SOT-363
Base Product Number:	
NTJD4158	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

MOSFET - Small Signal, Complementary, SC-88 30 V/-20 V, +0.25/-0.88 A

Features

- Leading 20 V Trench for Low RDS(on) Performance
- ESD Protected Gate
- SC-88 Package for Small Footprint (2 x 2 mm)
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

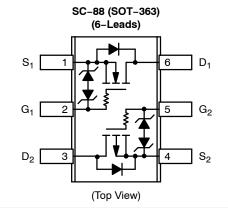
- DC–DC Conversion
- Load/Power Management
- Load Switch
- Cell Phones, MP3s, Digital Cameras, PDAs

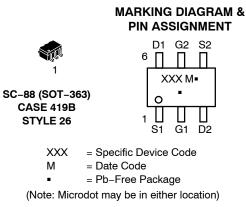
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Pai	Symbol	Value	Unit		
Drain-to-Source Vol	age	N-Ch	V _{DSS}	30	V
		P-Ch		-20	
Gate-to-Source Volta	age	N-Ch	V _{GS}	±20	V
		P-Ch		±12	
N-Channel Continuous Drain	Steady	$T_A = 25^{\circ}C$	Ι _D	0.25	А
Current (Note 1)	State	T _A = 85°C		0.18	
P-Channel Continuous Drain	Steady	T _A = 25°C		-0.88	
Current (Note 1)	State	T _A = 85°C		-0.63	
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	PD	0.27	W
Pulsed Drain Cur-	N-Ch	to 10.00	I _{DM}	0.5	А
rent	P-Ch	tp = 10 μs		-3.0	
Operating Junction a	T _J , T _{stg}	–55 to 150	°C		
Source Current (Body	/ Diode)	N-Ch	۱ _S	0.25	А
		P-Ch		-0.48	
Lead Temperature for (1/8" from case for 10		irposes	ΤL	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	460	°C/W


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
N–Ch	1.0 Ω @ 4.5 V	0.25 A
30 V	1.5 Ω @ 2.5 V	0.23 A
P-Ch	215 mΩ @ -4.5 V	-0.88 A
–20 V	345 mΩ @ –2.5 V	-0.00 A

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Condition	1	Min	Тур	Max	Unit
OFF CHARACTERISTICS (Note 3)								
Drain-to-Source	V _{(BR)DSS}	Ν	V _{GS} = 0 V	I _D = 250 μA	30			V
Breakdown Voltage		Р	V _{GS} = 0 V	I _D = -250 μA	-20			
Drain-to-Source Breakdown	V _{(BR)DSS} /	Ν				33		mV/
Voltage Temperature Coefficient	TJ	Р				-9.0		°C
Zero Gate Voltage Drain Current	I _{DSS}	Ν	$V_{GS} = 0 V, V_{DS} = 30 V$	T.I = 25°C			1.0	μΑ
		Р	$V_{GS} = 0 V, V_{DS} = -16 V$	1] = 23 0			1.0	
		Ν	$V_{GS} = 0 V, V_{DS} = 30 V$	T.I = 125°C		0.5		
		Р	$V_{GS} = 0 V, V_{DS} = -16 V$	1j=123.0		0.5		
Gate-to-Source Leakage Current	I _{GSS}	Ν	V _{DS} = 0 V, V _{GS} = 1	0 V			1.0	μΑ
		Р	$V_{DS} = 0 V, V_{GS} = -4$	4.5 V			1.0	

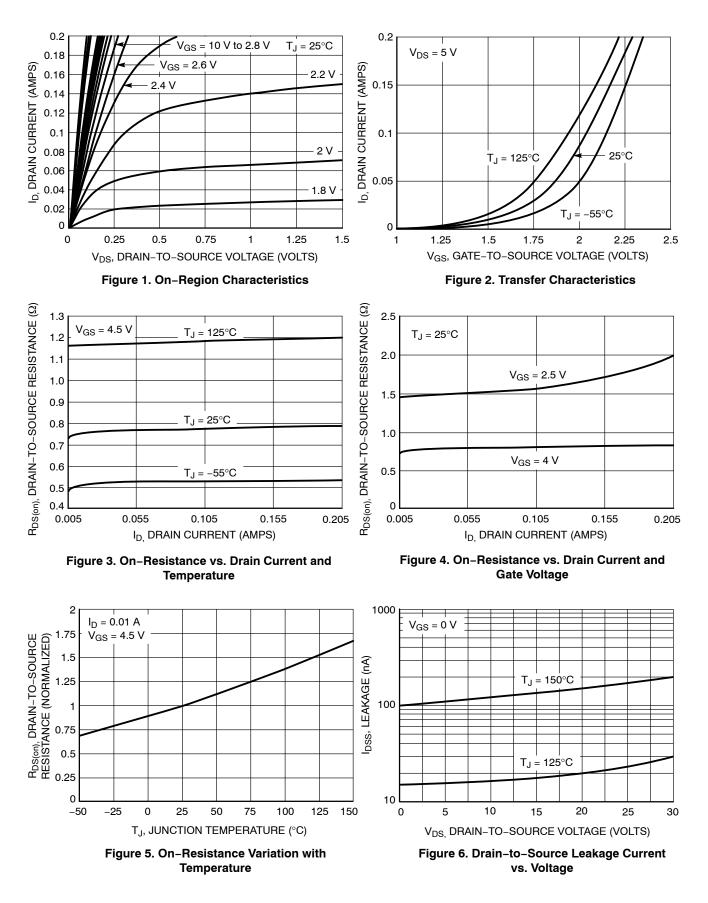
ON CHARACTERISTICS (Note 2)

Gate Threshold Voltage	V _{GS(TH)}	Ν	$V_{GS} = V_{DS}$	I _D = 100 μA	0.8	1.2	1.5	V
		Р	VGS – VDS	I _D = -250 μA	-0.45	-0.61	-1.5	
Negative Gate Threshold	V _{GS(TH)} /	Ν				3.2		mV/
Temperature Coefficient	ТJ	Р				-2.7		°C
Drain-to-Source On Resistance	R _{DS(on)}	Ν	V _{GS} = 4.5 V, I _D = 10 mA			1.0	1.5	Ω
		Р	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -0.5 \text{ V}$).88 A		0.215	0.260	
		Ν	V _{GS} = 2.5 V, I _D = 10) mA		1.5	2.5	
		Р	$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -0.5 \text{ V}$).71 A		0.345	0.500	
Forward Transconductance	9 _{FS}	Ν	V _{DS} = 3.0 V, I _D = 10) mA		0.08		S
		Р	V _{DS} = -10 V, I _D = -0	.88 A		3.0		

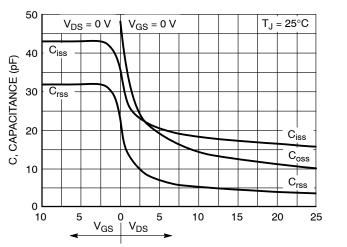
CHARGES, CAPACITANCES AND GATE RESISTANCE

Input Capacitance	C _{ISS}	Ν		V _{DS} = 5.0 V	20	33	pF
		Р	1	V _{DS} = -20 V	155	225	
Output Capacitance	C _{OSS}	Ν	f = 1 MHz, V _{GS} = 0 V	V _{DS} = 5.0 V	19	32	
		Р	$1 = 1$ with 2 , $\sqrt{GS} = 0$ $\sqrt{2}$	$V_{DS} = -20 V$	25	40	
Reverse Transfer Capacitance	C _{RSS}	Ν	1	V _{DS} = 5.0 V	7.25	12	
		Р		$V_{DS} = -20 V$	18	30	
Total Gate Charge	Q _{G(TOT)}	Ν	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V}, I_D = 0.1 \text{ A}$		0.9	1.5	nC
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$	I _D = -0.88 A	2.2	3.5	
Threshold Gate Charge	Q _{G(TH)}	Ν	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V}, I_D = 0.1 \text{ A}$		0.2		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$	I _D = -0.88 A	0.2		
Gate-to-Source Charge	Q _{GS}	Ν	$V_{GS} = 5.0 \text{ V}, \text{ V}_{DS} = 24 \text{ V}, \text{ I}_{D} = 0.1 \text{ A}$		0.3		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$	I _D = -0.88 A	0.5		
Gate-to-Drain Charge	Q _{GD}	Ν	V_{GS} = 5.0 V, V_{DS} = 24 V, I_{D} = 0.1 A		0.2		1
		Р	$V_{GS} = -4.5 \text{ V}, \text{ V}_{DS} = -10 \text{ V},$	I _D = -0.88 A	0.65		

SWITCHING CHARACTERISTICS (Note 3)


Turn-On Delay Time	t _{d(ON)}	Ν		15	ns
Rise Time	t _r		V _{GS} = 4.5 V, V _{DD} = 5.0 V,	66	
Turn-Off Delay Time	t _{d(OFF)}		I_D = 250 mA, R_G = 50 Ω	56	
Fall Time	t _f			78	
Turn-On Delay Time	t _{d(ON)}	Р		5.8	
Rise Time	t _r		V _{GS} = -4.5 V, V _{DD} = -10 V,	6.5	
Turn-Off Delay Time	t _{d(OFF)}		I_D = -0.5 A, R_G = 20 Ω	13.5	
Fall Time	tr	1		3.5	

DRAIN-SOURCE DIODE CHARACTERISTICS


Forward Diode Voltage	V _{SD}	Ν	V _{GS} = 0 V, T _J = 25°C	I _S = 10 mA	0.65	0.7	V
		Р	VGS = 0 V, 1J = 25 O	I _S = -0.48 A	-0.8	-1.2	
		Ν	V _{GS} = 0 V, T _J = 125°C	I _S = 10 mA	0.45		
		Р	$V_{GS} = 0 V, T_{J} = T_{23} C$	I _S = -0.48 A	-0.66		1
Reverse Recovery Time	t _{RR}	Ν	$V_{GS} = 0 \text{ V}, \text{ d}_{IS}/\text{d}_{t} = 8.0 \text{ A}/\mu\text{s}$	I _S = 10 mA	12.4		ns
		Р	$V_{GS} = 0 V$, $d_{IS}/d_t = 100 A/\mu s$	I _S = -0.48 mA	10.6		

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

1000

t, TIME (ns) 001

10

1

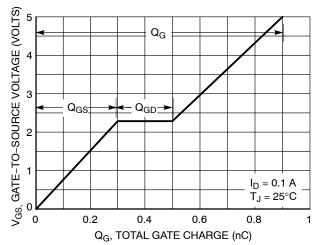
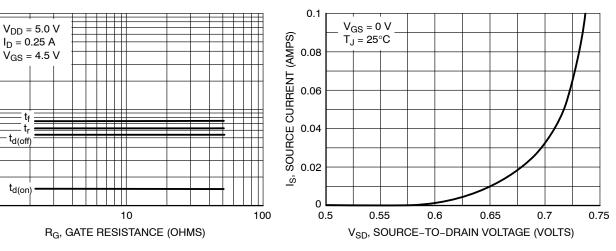
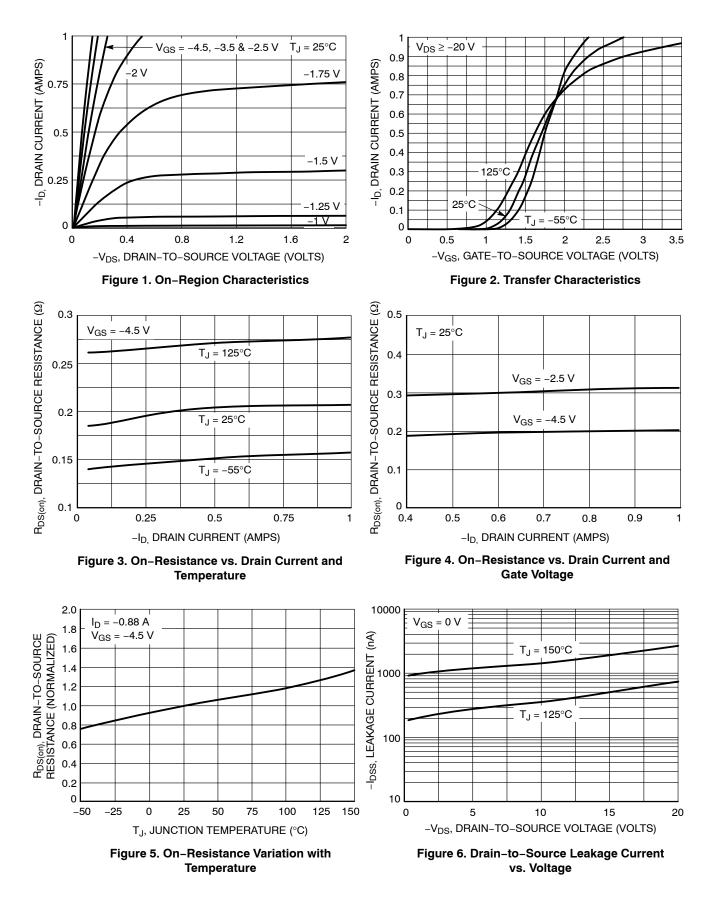


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

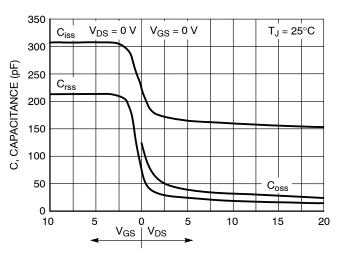

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

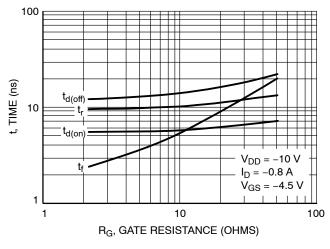


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

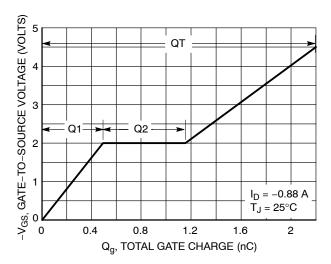


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

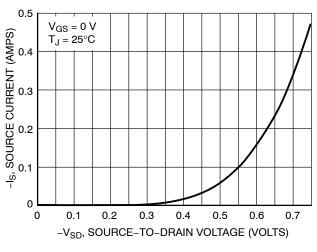


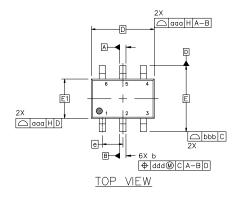
Figure 10. Diode Forward Voltage vs. Current

ORDERING INFORMATION

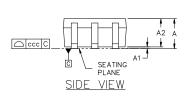
Device	Marking	Package	Shipping [†]
NTJD4158CT1G	TCD		
NTJD4158CT2G	TCD	SC-88 (Pb-Free)	3000 / Tape & Reel
NVJD4158CT1G*	VCD		

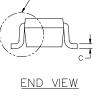
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

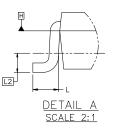
*NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.


CASE 419B-02 **ISSUE Z**

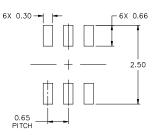
PACKAGE DIMENSIONS


SC-88 2.00x1.25x0.90, 0.65P


DATE 18 APR 2024


NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME 1. Y14.5-2018.
- 2.
- ALL DIMENSION ARE IN MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 3. PER END.
- 4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF
- DATUMS A AND B ARE DETERMINED AT DATUM H. 5.
- DIMENSIONS & AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. 7 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION & AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.



DETAIL A

	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
А			1.10
A1	0.00		0.10
A2	0.70	0.90	1.00
b	0.15	0.20	0.25
с	0.08	0.15	0.22
D	2.00 BSC		
E	2.10 BSC		
E1	1.25 BSC		
е	0.65 BSC		
L	0.26	0.36	0.46
L2	0.15 BSC		
aaa	0.15		
bbb	0.30		
ccc	0.10		
ddd	0.10		

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code = Date Code* Μ

GENERIC **MARKING DIAGRAM***

XXXM.

. 0

6

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65P		PAGE 1 OF 2
		LLC dba onsemi or its subsidiaries in the United States and/or other cours es no warranty, representation or guarantee regarding the suitability of its p	

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z

DATE 18 APR 2024

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13:	STYLE 14:	STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE	PIN 1. VREF	PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. N/C	2. GND	2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. COLLECTOR	3. GND	3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. EMITTER	4. IOUT	4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. BASE	5. VEN	5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE	6. VCC	6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 19:	STYLE 20:	STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. I OUT	PIN 1. COLLECTOR	PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. GND	2. COLLECTOR	2. N/C	2. GND	2. CH1	2. ANODE
3. GND	3. BASE	3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. V CC	4. EMITTER	4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. V EN	5. COLLECTOR	5. N/C	5. VBUS	5. CH2	5. CATHODE
6. V REF	6. COLLECTOR	6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 25:	STYLE 26:	STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 1	PIN 1. SOURCE 1	PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. CATHODE	2. GATE 1	2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 2	3. DRAIN 2	3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. BASE 2	4. SOURCE 2	4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER	5. GATE 2	5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 1	6. DRAIN 1	6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65P		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

NTJD4158CT1G onsemi MOSFET N/P-CH 30V/20V SC88

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any dovices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of pers

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.