

NTMSD6N303R2 Datasheet

www.digi-electronics.com

DiGi Electronics Part Number

Manufacturer

Manufacturer Product Number

and the set of the set of the

Description

Detailed Description

NTMSD6N303R2-DG

onsemi

NTMSD6N303R2

MOSFET N-CH 30V 6A 8SOIC

N-Channel 30 V 6A (Ta) 2W (Ta) Surface Mount 8-SO IC

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NTMSD6N303R2	onsemi
Series:	Product Status:
FETKY™	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
30 V	6A (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
4.5V, 10V	32mOhm @ 6A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
2.5V @ 250µA	30 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	950 pF @ 24 V
FET Feature:	Power Dissipation (Max):
Schottky Diode (Isolated)	2W (Ta)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
8-SOIC	8-SOIC (0.154", 3.90mm Width)
Base Product Number:	
NTMSD6	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

Power MOSFET

6 Amps, 30 Volts N–Channel SO–8 FETKY™

The FETKY product family incorporates low $R_{DS(on)}$ MOSFETs packaged with an industry leading, low forward drop, low leakage Schottky Barrier rectifier to offer high efficiency components in a space saving configuration. Independent pinouts for MOSFET and Schottky die allow the flexibility to use a single component for switching and rectification functions in a wide variety of applications.

Features

- These Devices are Pb-Free and are RoHS Compliant
- NVMSD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

Applications

- Buck Converter
- Buck–Boost
- Synchronous Rectification
- Low Voltage Motor Control
- Battery Packs
- Chargers
- Cell Phones

MOSFET MAXIMUM RATINGS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$ (Note 1)

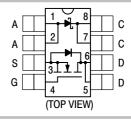
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	30	Vdc
Drain-to-Gate Voltage (R_{GS} = 1.0 M Ω)	V _{DGR}	30	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc
$\begin{array}{l} \text{Drain Current} - (\text{Note 2}) \\ - \text{ Continuous } @ \ T_{\text{A}} = 25^{\circ}\text{C} \\ - \text{ Single Pulse (tp \leq 10 \ \mu\text{s}) \end{array}$	I _D I _{DM}	6.0 30	Adc Apk
Total Power Dissipation @ T _A = 25°C (Note 2)	PD	2.0	Watts
$ \begin{array}{l} \mbox{Single Pulse Drain-to-Source Avalanche} \\ \mbox{Energy} - \mbox{Starting } T_J = 25^\circ C \\ (V_{DD} = 30 \mbox{ Vdc}, \mbox{ V}_{GS} = 5.0 \mbox{ Vdc}, \\ V_{DS} = 20 \mbox{ Vdc}, \mbox{ I}_L = 9.0 \mbox{ Apk}, \\ \mbox{L} = 10 \mbox{ mH}, \mbox{ R}_G = 25 \Omega \label{eq:rescaled} \end{array} $	E _{AS}	325	mJ

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width \leq 250 μ s, Duty Cycle \leq 2.0%.

2. Mounted on 2" square FR4 board

(1 in sq, 2 oz. Cu 0.06" thick single sided), 10 sec. max.


ON Semiconductor®

http://onsemi.com

 $\begin{array}{c} \text{MOSFET}\\ \textbf{6.0 AMPERES}\\ \textbf{30 VOLTS}\\ \textbf{24 m}\Omega @ V_{\text{GS}} = \textbf{10 V (Typ)} \end{array}$

SCHOTTKY DIODE 6.0 AMPERES 30 VOLTS

MARKING DIAGRAM & PIN ASSIGNMENT

8 A A A A

CCDD

E6N3x AYWW •

ΗΗ

G

	Ă Ă S
E6N3	= Device Code
х	= Blank or S
А	= Assembly Location
Y	= Year

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMSD6N303R2G	SO-8 (Pb-Free)	2500/Tape & Reel
NTMSD6N303R2SG	SO-8 (Pb-Free)	2500/Tape & Reel
NVMSD6N303R2G	SO-8 (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SCHOTTKY RECTIFIER MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	30	Volts
DC Blocking Voltage	V _R		
Average Forward Current (Note 3) (Rated V_R) $T_A = 104^{\circ}C$	Ι _Ο	2.0	Amps
Peak Repetitive Forward Current (Note 3) (Rated V _R , Square Wave, 20 kHz) T _A = 108°C	I _{frm}	4.0	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half-wave, single phase, 60 Hz)	I _{fsm}	30	Amps

THERMAL CHARACTERISTICS – SCHOTTKY AND MOSFET

Thermal Resistance – Junction-to-Ambient (Note 4) – MOSFET	R_{\thetaJA}	167	°C/W
Thermal Resistance – Junction-to-Ambient (Note 5) – MOSFET	R_{\thetaJA}	97	
Thermal Resistance – Junction-to-Ambient (Note 3) – MOSFET	$R_{\theta JA}$	62.5	
Thermal Resistance – Junction-to-Ambient (Note 4) – Schottky	$R_{\theta JA}$	197	
Thermal Resistance – Junction-to-Ambient (Note 5) – Schottky	$R_{\theta JA}$	97	
Thermal Resistance – Junction-to-Ambient (Note 3) – Schottky	$R_{\theta JA}$	62.5	
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to +150	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

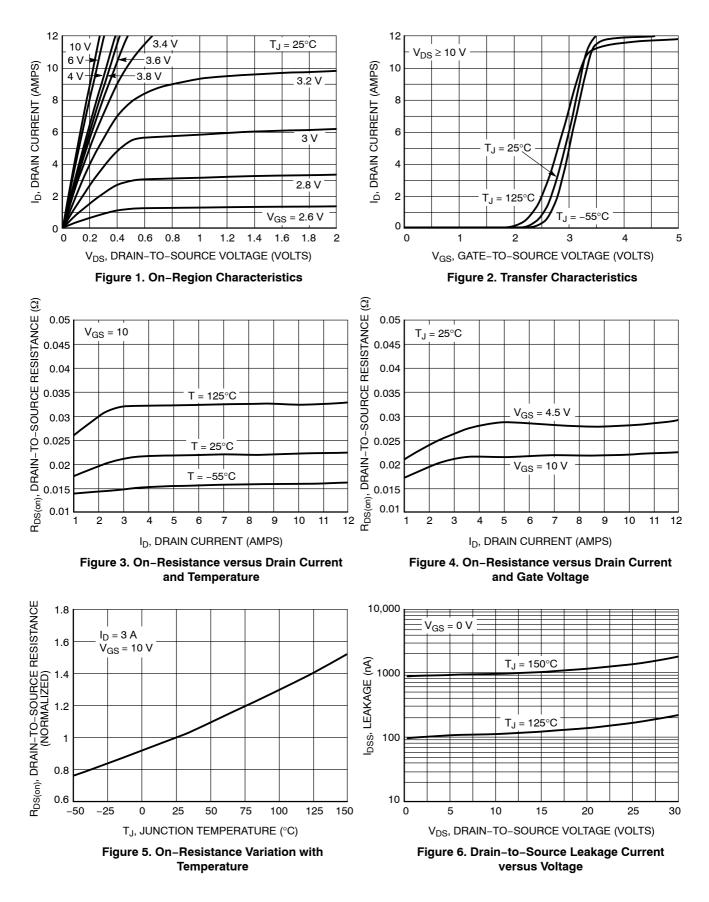
3. Mounted on 2" square FR4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), 10 sec. max.

4. Mounted with minimum recommended pad size, PC Board FR4.

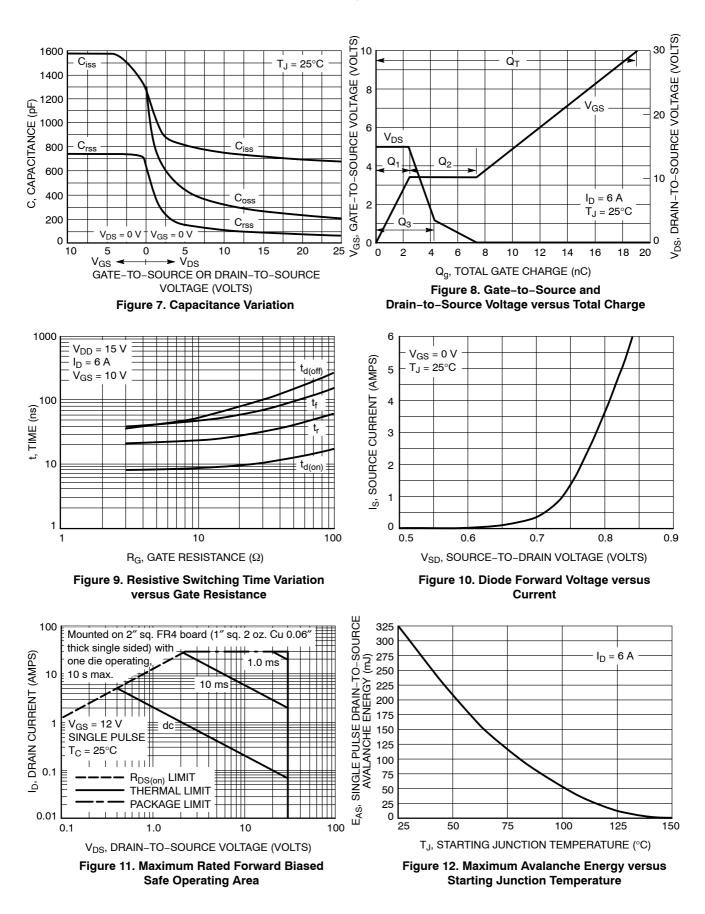
5. Mounted on 2" square FR4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), Steady State.

SCHOTTKY RECTIFIER ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

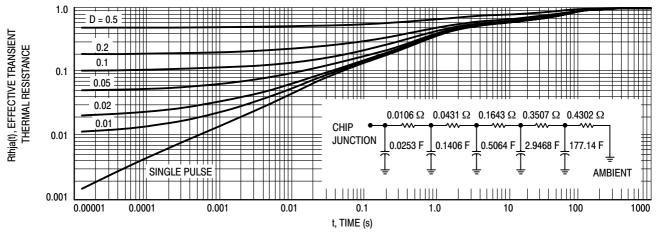
Characteristics	Symbol	Va	lue	Unit
Maximum Instantaneous Forward Voltage (Note 6)	V _F	T _J = 25°C	T _J = 125°C	Volts
I _F = 100 m I _F = 3.0 I _F = 6.0	Adc Adc Adc	0.28 0.42 0.50	0.13 0.33 0.45	
Maximum Instantaneous Reverse Current (Note 6)	I _R	T _J = 25°C	T _J = 125°C	
V _R = 3		250 -	_ 25	μA mA
Maximum Voltage Rate of Change $V_R = 3$	0 V dV/dt	10	,000	V/μs

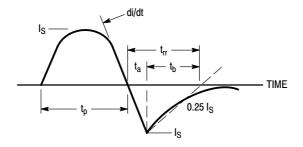

6. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

MOSFET ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

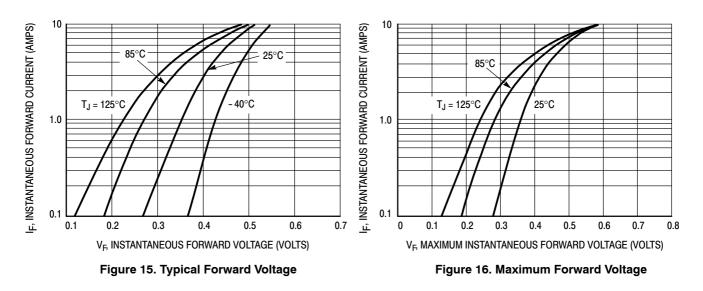

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage ($V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu A$)		V _{(BR)DSS}	30	_	_	Vdc
Temperature Coefficient (Positive)			-	30	-	mV/°C
Zero Gate Voltage Drain Current (V_{DS} = 24 Vdc, V_{GS} = 0 Vdc, T_J = (V_{DS} = 24 Vdc, V_{GS} = 0 Vdc, T_J =	= 25°C) = 125°C)	I _{DSS}			1.0 20	μAdc
Gate-Body Leakage Current ($V_{GS} = \pm 20$ Vdc, $V_{DS} = 0$ Vdc)		I _{GSS}	_	_	100	nAdc
ON CHARACTERISTICS (Note 7)				1		
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 250 \mu Adc$) Temperature Coefficient (Negative)		V _{GS(th)}	1.0	1.8 4.6	2.5	Vdc mV/°C
Static Drain-to-Source On-State Re (V_{GS} = 10 Vdc, I_D = 6 Adc) (V_{GS} = 4.5 Vdc, I_D = 3.9 Adc)	esistance	R _{DS(on)}		0.024 0.030	0.032 0.040	Ω
Forward Transconductance (V _{DS} = 15 Vdc, I _D = 5.0 Adc)		9FS	_	10	_	Mhos
OYNAMIC CHARACTERISTICS		4		Į		1
Input Capacitance		C _{iss}	-	680	950	pF
Output Capacitance	(V _{DS} = 24 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	-	210	300	
Reverse Transfer Capacitance		C _{rss}	_	70	135	1
	lotes 7 & 8)					
Turn-On Delay Time		t _{d(on)}	-	9	18	ns
Rise Time	(V _{DD} = 15 Vdc, I _D = 1 A, V _{GS} = 10 V,	t _r	-	22	40	
Turn-Off Delay Time	$R_{\rm G} = 6 \Omega$	t _{d(off)}	-	45	80	
Fall Time		t _f	I	45	80	
Turn-On Delay Time		t _{d(on)}	-	13	30	ns
Rise Time	(V _{DD} = 15 Vdc, I _D = 1 A, V _{GS} = 4.5 V,	t _r	-	27	50	
Turn-Off Delay Time	$R_{\rm G} = 6 \ \Omega$	t _{d(off)}	-	22	40	
Fall Time		t _f	-	34	70	
Gate Charge		Q _T	-	19	30	nC
	(V _{DS} = 15 Vdc, V _{GS} = 10 Vdc,	Q ₁	-	2.4	-	
	$I_{\rm D} = 5 \text{ A}$	Q ₂	-	5.0	-	
		Q ₃	-	4.3	-	
BODY-DRAIN DIODE RATINGS (No		-i			i	
Diode Forward On-Voltage	$(I_{\rm S}$ = 1.7 Adc, V _{GS} = 0 V) $(I_{\rm S}$ = 1.7 Adc, V _{GS} = 0 V, T _J = 150°C)	V _{SD}		0.75 0.62	1.0 -	Vdc
Reverse Recovery Time		t _{rr}	-	26	-	ns
	(I _S = 5 A, V _{GS} = 0 V, dI _S /dt = 100 A/μs)	t _a	-	11	-	
		t _b	-	15	-	
Reverse Recovery Stored Charge $(I_S = 5 \text{ A}, \text{ dI}_S/\text{dt} = 100 \text{ A}/\mu\text{s}, \text{ V}_{GS} = $	- 0 \/)	Q _{RR}	-	0.015	-	μC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.


TYPICAL MOSFET ELECTRICAL CHARACTERISTICS


NTMSD6N303, NVMSD6N303

TYPICAL FET ELECTRICAL CHARACTERISTICS



TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

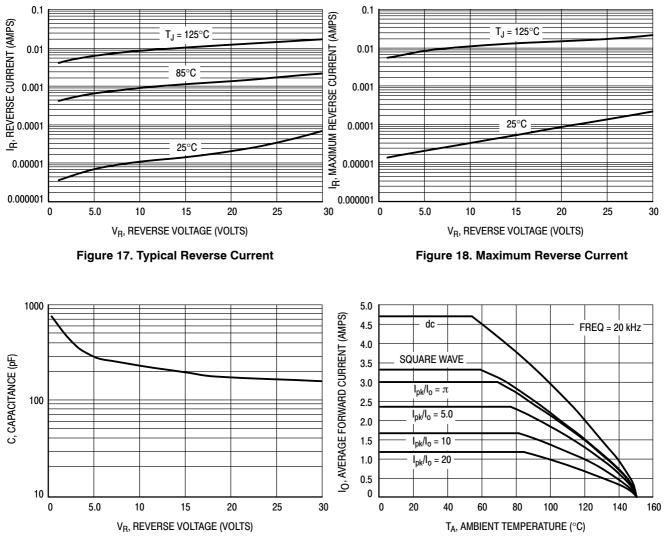


Figure 19. Typical Capacitance

Figure 20. Current Derating

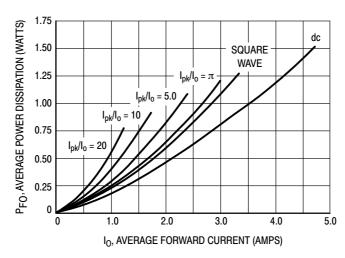


Figure 21. Forward Power Dissipation

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

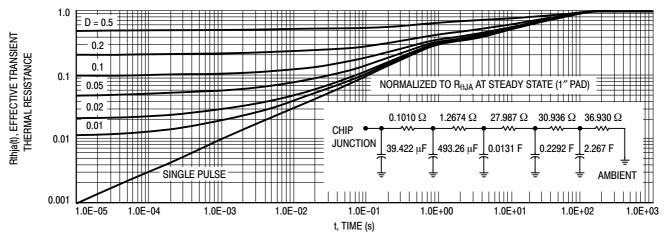
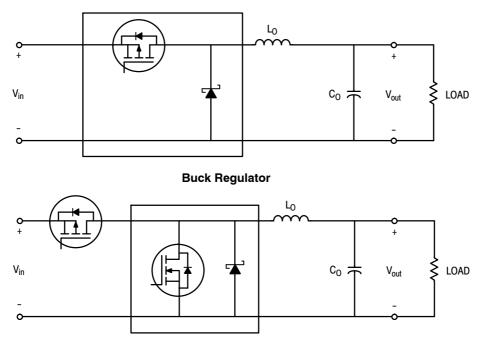
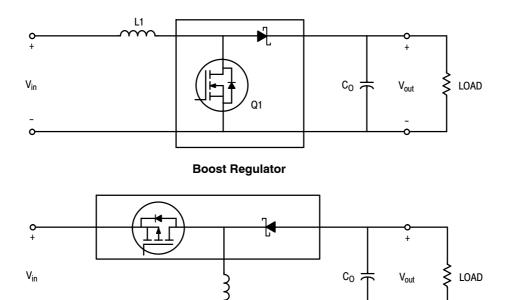
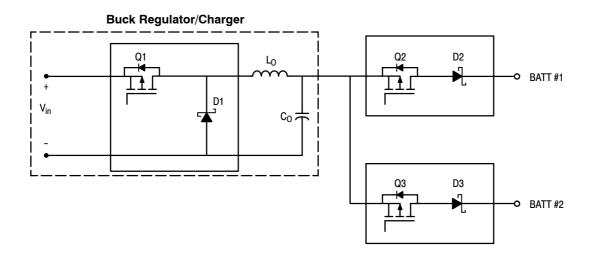



Figure 22. Schottky Thermal Response

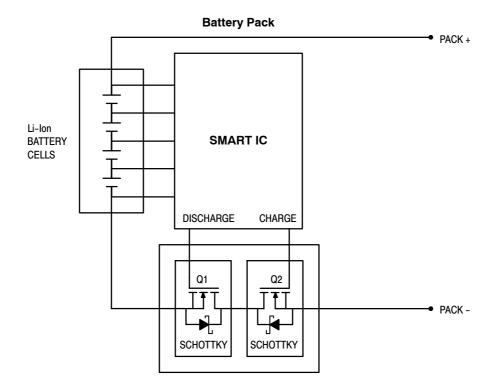
TYPICAL APPLICATIONS


STEP DOWN SWITCHING REGULATORS

TYPICAL APPLICATIONS

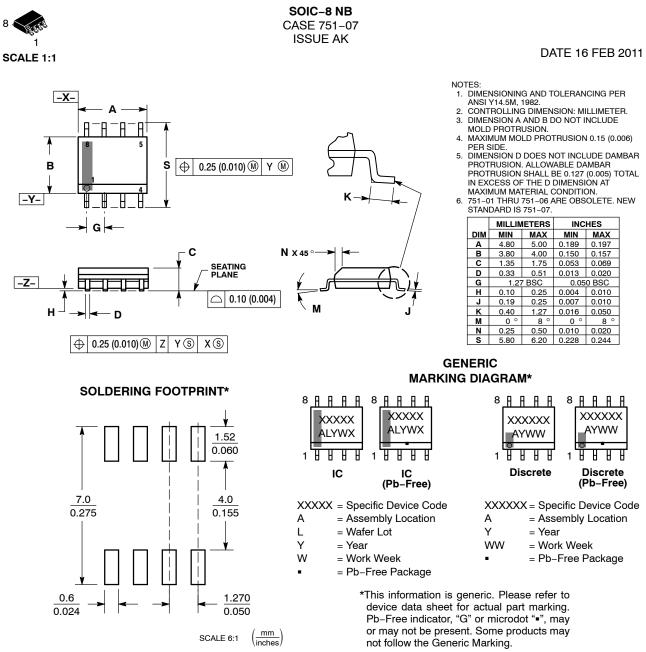

STEP UP SWITCHING REGULATORS

Buck-Boost Regulator


0

TYPICAL APPLICATIONS

Li-Ion BATTERY PACK APPLICATIONS



- Applicable in battery packs which require a high current level.
- During charge cycle Q2 is on and Q1 is off. Schottky can reduce power loss during fast charge.
- During discharge Q1 is on and Q2 is off. Again, Schottky can reduce power dissipation.
- Under normal operation, both transistors are on.

FETKY is a trademark of International Rectifier Corporation.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED to the stamped "CONTROLLED to the stamped statement of the stamped statement of the s	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2
the right to make changes without furth purpose, nor does onsemi assume as	ner notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. FMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17 PIN 1. VCC 2. V2OUT V10UT 3. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: CATHODE 1 PIN 1. 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE. #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18 PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8 VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: DRAIN, DIE #1 PIN 1. DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS З. THIRD STAGE SOURCE GROUND 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 2 OVI 0 З. UVLO 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. COLLECTOR/ANODE 8. STYLE 28: 11. SW_TO_GND 2. DASIC OFF PIN 1. DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

SOURCE 1/DRAIN 2

7.

8. GATE 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

NTMSD6N303R2 onsemi MOSFET N-CH 30V 6A 8SOIC

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

CURALITY MANAGEMENT SYSTEM CERTIFICATE DIG ELECTONICS for LINTED DIG ELECTONICS for LINTED CONTROL OF LINE CONTROL OF LINE MARKED BY AND			
NO BO Inferent elementaria empresata	The set of the many sectors and the sectors of the	100 Million of a Carlow Companyor	 A # 4 # # ≤ 0 = A # = A ± 0 ± 0 # A = A
With the second seco	Hand and an	Hand and an	Martin Uhara R. <u>Jereza</u> <u>Jereza</u> <u>Jereza</u> <u>Jereza</u> <u>Jereza</u> <u>Jereza</u> <u>Jereza</u> Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza Jereza

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.