

NTP18N06 Datasheet

www.digi-electronics.com

DiGi Electronics Part Number

Manufacturer

Manufacturer Product Number

Description

Section addres the

Detailed Description

NTP18N06-DG

onsemi

NTP18N06

MOSFET N-CH 60V 15A TO220AB

N-Channel 60 V 15A (Tc) 48.4W (Tc) Through Hole T O-220

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NTP18N06	onsemi
Series:	Product Status:
-	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
60 V	15A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
10V	90mOhm @ 7.5A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
4V @ 250μΑ	22 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	450 pF @ 25 V
FET Feature:	Power Dissipation (Max):
	48.4W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 175°C (TJ)	Through Hole
Supplier Device Package:	Package / Case:
TO-220	ТО-220-3
Base Product Number:	
NTP18N	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):	
RoHS non-compliant	1 (Unlimited)	
REACH Status:	ECCN:	
REACH Unaffected	EAR99	
HTSUS:		
8541.29.0095		

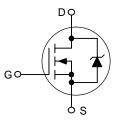
ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi modus cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or de

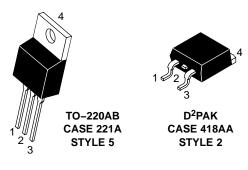

Power MOSFET

15 A, 60 V, N-Channel TO-220 & D²PAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits. N-Channel

Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits
- Pb-Free Packages are Available



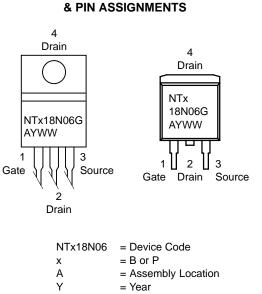
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
60 V	90 mΩ @ 10 V	15 A

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	60	Vdc
Drain-to-Gate Voltage (R_{GS} = 10 m Ω)	V _{DGR}	60	Vdc
Gate–to–Source Voltage – Continuous – Non–Repetitive (t _p ≤ 10 ms)	V _{GS}	±20 ±30	Vdc
Drain Current – Continuous @ $T_C = 25^{\circ}C$ – Continuous @ $T_C = 100^{\circ}C$ – Single Pulse ($t_p \le 10 \ \mu s$)	I _D ID IDM	15 8.0 45	Adc Adc A _{pk}
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	48.4 0.32	W W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to +175	°C
$ Single Pulse Drain-to-Source Avalanche \\ Energy - Starting T_J = 25°C \\ (V_{DD} = 25 Vdc, V_{GS} = 10 Vdc, V_{DS} = 60 Vdc, \\ I_{L(pk)} = 11 A, L = 1.0 mH, R_G = 25 \Omega) $	E _{AS}	61	mJ
Thermal Resistance – Junction–to–Case – Junction–to–Ambient	R _{θJC} R _{θJA}	3.1 72.5	°C/W
Maximum Lead Temperature for Soldering Purposes, (1/8" from case for 10 s)	ΤL	260	°C


Maximum ratings are those values beyond which device damage can occur.

Maximum ratings applied to the device are individual stress limit values (not

normal operating conditions) and are not valid simultaneously. If these limits are

exceeded, device functional operation is not implied, damage may occur and

MARKING DIAGRAMS

ORDERING INFORMATION

= Work Week

= Pb-Free Package

WW

G

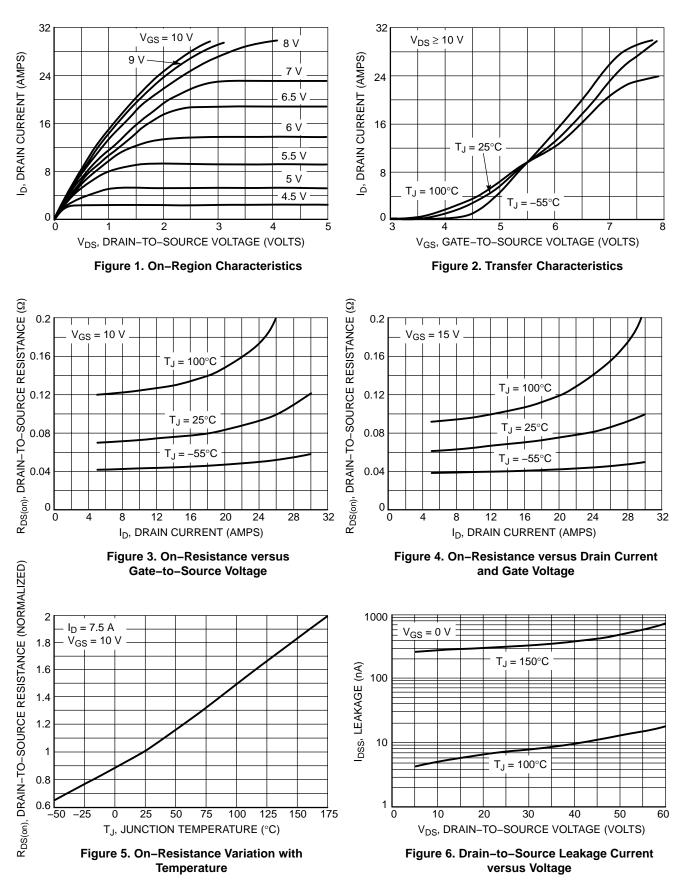
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

reliability may be affected.

NTP18N06 onsemi MOSFET N-CH 60V 15A TO220AB

NTP18N06, NTB18N06

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 1) (V _{GS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive)			60 -	67 62.4		Vdc mV/°C
Zero Gate Voltage Drain Current ($V_{GS} = 0$ Vdc, $V_{DS} = 60$ Vdc) ($V_{GS} = 0$ Vdc, $V_{DS} = 60$ Vdc, $T_{DS} = 60$ VdC,	J = 150°C)	I _{DSS}			1.0 10	μAdc
Gate-Body Leakage Current (Vg	$v_{\rm S} = \pm 20 \text{Vdc}, \text{V}_{\rm DS} = 0 \text{Vdc})$	I _{GSS}	_	_	±100	nAdc
ON CHARACTERISTICS (Note 1)						
Gate Threshold Voltage (Note 1) ($V_{DS} = V_{GS}$, $I_D = 250 \ \mu$ Adc) Threshold Temperature Coefficie	nt (Negative)	V _{GS(th)}	2.0	2.9 6.2	4.0 _	Vdc mV/°C
Static Drain-to-Source On-Resi (V _{GS} = 10 Vdc, I _D = 7.5 Adc)	stance (Note 1)	R _{DS(on)}	-	76	90	mΩ
Static Drain-to-Source On-Voltage (Note 1) ($V_{GS} = 10 \text{ Vdc}, I_D = 15 \text{ Adc}$) ($V_{GS} = 10 \text{ Vdc}, I_D = 7.5 \text{ Adc}, T_J = 150^{\circ}\text{C}$)		V _{DS(on)}	-	1.2 1.08	1.62 -	Vdc
Forward Transconductance (Note	e 1) (V _{DS} = 7.0 Vdc, I _D = 6.0 Adc)	9 FS	-	6.8	-	mhos
YNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	325	450	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	108	150	
Reverse Transfer Capacitance		C _{rss}	-	34	70	1
WITCHING CHARACTERISTICS	G (Note 2)					•
Turn-On Delay Time		t _{d(on)}	-	10	15	ns
Rise Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 15 \text{ Adc},$	tr	-	25	70	
Turn-Off Delay Time	V _{GS} = 10 Vdc, R _G = 9.1 Ω) (Note 1)	t _{d(off)}	-	14	50	
Fall Time		t _f	-	13	50	
Gate Charge		Qt	-	12	22	nC
	(V _{DS} = 48 Vdc, I _D = 15 Adc, V _{GS} = 10 Vdc) (Note 1)	Q ₁	-	4.1	-	
			-	4.5	-	
OURCE-DRAIN DIODE CHARA	CTERISTICS					
Diode Forward On–Voltage	$(I_{S} = 15 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 1)}$ $(I_{S} = 15 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 150^{\circ}\text{C})$	V _{SD}		0.95 0.84	1.15 -	Vdc
Reverse Recovery Time		t _{rr}	-	35	-	ns
		t _a	-	27	-	
(I _S = 15 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs) (Note 1)		t _b	-	7.4	-	
Reverse Recovery Stored Charge		Q _{RR}	-	0.050	-	μC

ORDERING INFORMATION

Device	Package	Shipping [†]
NTP18N06	TO-220AB	50 Units / Rail
NTP18N06G	TO-220AB (Pb-Free)	50 Units / Rail
NTB18N06	D ² PAK	50 Units / Rail
NTB18N06G	D ² PAK (Pb–Free)	50 Units / Rail
NTB18N06T4	D ² PAK	800 Units / Tape & Reel
NTB18N06T4G	D ² PAK (Pb–Free)	800 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTP18N06, NTB18N06

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain–gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current ($I_{G(AV)}$) can be made from a rudimentary analysis of the drive circuit so that

 $t = Q/I_{G(AV)}$

During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, V_{SGP} . Therefore, rise and fall times may be approximated by the following:

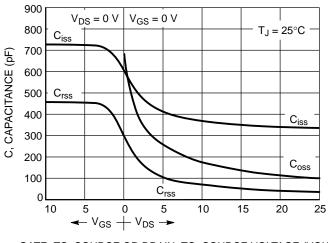
 $t_r = Q_2 \ x \ R_G / (V_{GG} - V_{GSP})$

 $t_f = Q_2 \ x \ R_G / V_{GSP}$

where

 V_{GG} = the gate drive voltage, which varies from zero to V_{GG}

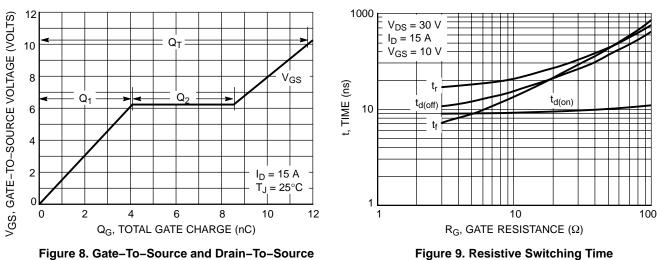
 R_G = the gate drive resistance


and Q_2 and V_{GSP} are read from the gate charge curve.

During the turn–on and turn–off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

 $t_{d(on)} = R_G C_{iss} In [V_{GG}/(V_{GG} - V_{GSP})]$ $t_{d(off)} = R_G C_{iss} In (V_{GG}/V_{GSP})$ The capacitance (C_{iss}) is read from the capacitance curve at a voltage corresponding to the off–state condition when calculating $t_{d(on)}$ and is read at a voltage corresponding to the on–state when calculating $t_{d(off)}$.

At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.


The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

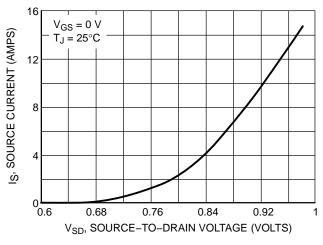
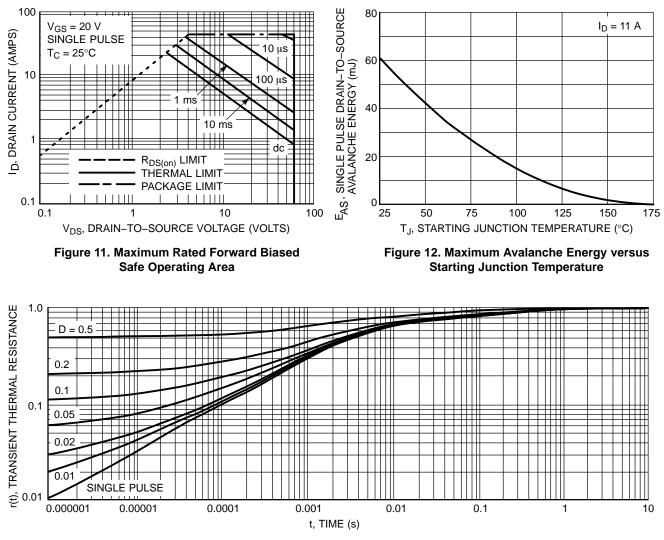
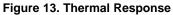


Figure 10. Diode Forward Voltage versus Current

SAFE OPERATING AREA


The Forward Biased Safe Operating Area curves define the maximum simultaneous drain–to–source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance – General Data and Its Use."


Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (I_{DM}) nor rated voltage (V_{DSS}) is exceeded and the transition time (t_r,t_f) do not exceed 10 µs. In addition the total power averaged over a complete switching cycle must not exceed (T_{J(MAX)} – T_C)/(R_{θJC}).

A Power MOSFET designated E–FET can be safely used in switching circuits with unclamped inductive loads. For reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non–linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E–FETs can withstand the stress of drain–to–source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_D), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_D can safely be assumed to equal the values indicated.

SAFE OPERATING AREA

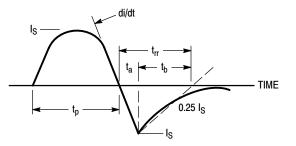


Figure 14. Diode Reverse Recovery Waveform

PACKAGE DIMENSIONS

MILLIMETERS

9.65

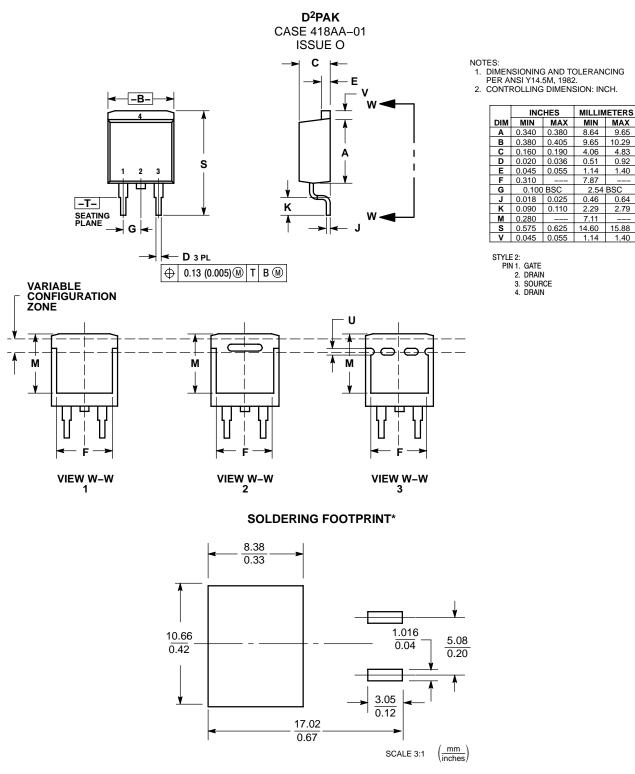
4.83 0.92

1.40

2.79

10.29

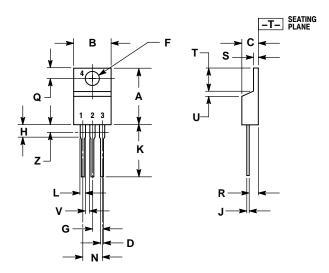
8.64


9.65

1.14

7.87

2.29


2.54 BSC 0.46 0.64

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AA**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2

1 14.3M, 1962. CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. 3.

	INCHES		MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
Κ	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
۷	0.045		1.15		
Ζ		0.080		2.04	

PIN 1 GATE DRAIN 2. 3. SOURCE 4. DRAIN

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>	<section-header><section-header></section-header></section-header>	
Image: State	Here and the second sec	Hand and a set of the	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.