

NTR3A30PZT1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NTR3A30PZT1G-DG

Manufacturer onsemi

Manufacturer Product Number NTR3A30PZT1G

Description MOSFET P-CH 20V 3A SOT23-3

Detailed Description P-Channel 20 V 3A (Ta) 480mW (Ta) Surface Mount

SOT-23-3 (TO-236)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NTR3A30PZT1G	onsemi
Series:	Product Status:
	Last Time Buy
FET Type:	Technology:
P-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
20 V	3A (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
1.8V, 4.5V	38mOhm @ 3A, 4.5V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
1V @ 250μA	17.6 nC @ 4.5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±8V	1651 pF @ 15 V
FET Feature:	Power Dissipation (Max):
	480mW (Ta)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
SOT-23-3 (TO-236)	TO-236-3, SC-59, SOT-23-3
Base Product Number:	
NTR3A30	

Environmental & Export classification

8541.21.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

MOSFET – Power, Single P-Channel, SOT-23, 2.4 x 2.9 x 1.0 mm

-20 V, -5.5 A

Features

- Low R_{DS(on)} Solution in 2.4 mm x 2.9 mm Package
- ESD Diode-Protected Gate
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Side Load Switch
- Battery Switch
- Optimized for Power Management Applications for Portable Products, such as Smart Phones, Media Tablets, PMP, DSC, GPS, and Others

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

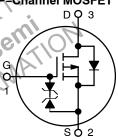
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Voltage			V _{GS}	±8	/V
Drain Current (Note 1)		Γ _A = 25°C	lο	-3.0	A
Drain Current (Note 1)	State	Γ _A = 85°C	QE	-2.2	
	t ≤ 5 s	Γ _A = 25°C	(-5.5	E
Power Dissipation		Γ _A = 25°C	P_{D}	0.48	a W
(Note 1)	State	5	5		
	t≤5s	. Er		1.58	
Pulsed Drain Current t _p = 10 µs			O _{DM}	-9.1	Α
Operating Junction and Sto	rage Tempe	erature	_T _J ,	-55 to	°C
"S" OE			T _{STG}	150	
ESD HBM, JESD22-A114			V _{ESD}	2000	V
Source Current (Body Diode) (Note 2)			I _S	-0.48	Α
Lead Temperature for Soldering Purposes		T_L	260	°C	
(1/8 in from case for 10 s)					

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	260	°C/W
Junction-to-Ambient – $t \le 5$ s (Note 1)	$R_{\theta JA}$	79	

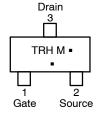
- 1. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [2 oz] including traces).
- 2. Pulse Test: pulse width ≤ 300 ms, duty cycle $\leq 2\%$.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS} R _{DS(on)} Max		I _D MAX
	38 mΩ @ -4.5 V	
-20 V	50 mΩ @ -2.5 V	-5.5 A
	73 mΩ @ –1.8 V	


P-Channel MOSFET

MARKING DIAGRAM & PIN ASSIGNMENT

SOT-23 CASE 318 STYLE 21

TRH = Specific Device Code

M = Date Code*
■ Pb-Free Package

(Note: Microdot may be in either location)

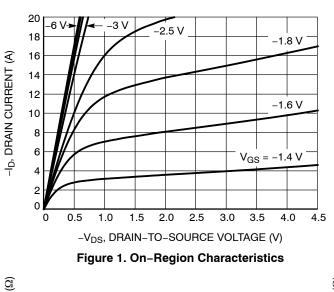
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTR3A30PZT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

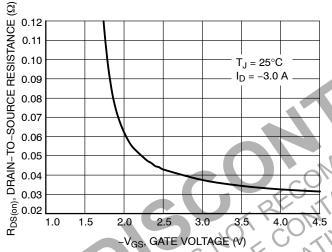
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	I.	1				Į.	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA, ref	to 25°C		10.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -20 V	T _J = 25°C			-1	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} :	= ±5 V			±10	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -$	-250 μΑ	-0.4	-0.65	-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				10.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V	I _D = -3 A		31	38	mΩ
		V _{GS} = -2.5 V	$I_D = -2.5 A$		36	50	•
		V _{GS} = -1.8 V	I _D = −1.5 A		51	73	
Forward Transconductance	9FS	$V_{DS} = -5 \text{ V}, I_D =$	= -3 A		30		S
CHARGES AND CAPACITANCES				NE	7		
Input Capacitance	C _{iss}		OF		1651		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$	V _{DS} = -15 V	em'	148		
Reverse Transfer Capacitance	C _{rss}		EV n	7	129		
Total Gate Charge	Q _{G(TOT)}	MD	120	Mr	17.6		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -1$	BV L S 20		0.7		
Gate-to-Source Charge	Q_{GS}	VGS = -4.5 V, VDS = -1	3 V, ID = -3A		2.4		
Gate-to-Drain Charge	Q _{GD}	0,00	2 \		4.9		
SWITCHING CHARACTERISTICS (Note 4	1) / (MILEO					
Turn-On Delay Time	t _{d(on)}	0,1/1/5			100		ns
Rise Time	dr	$V_{GS} = -4.5 \text{ V}, V_{DS}$ $I_{D} = -3 \text{ A}, R_{G} =$	= -15 V,		208		
Turn-Off Delay Time	t _{d(off)}	$I_D = -3 A, R_G =$	6.0 Ω		1043		
Fall Time	Y 6				552		
DRAIN-SOURCE DIODE CHARACTERIS	TICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$	T _J = 25°C		0.65	1.0	V
14.		$I_{S} = -0.4 \text{ A}$	T _J = 125°C		0.47		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: pulse width ≤ 300 ms, duty cycle ≤ 2%.


4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

20 $V_{DS} \leq -5 \; V$ 18 -I_D, DRAIN CURRENT (A) 16 14 12 10 $T_J = 25^{\circ}C$ 6 $T_J = 125^{\circ}C$ 4 2 = -55°C 0 0.5 1.0 1.5 2.0 2.5 -V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 2. Transfer Characteristics

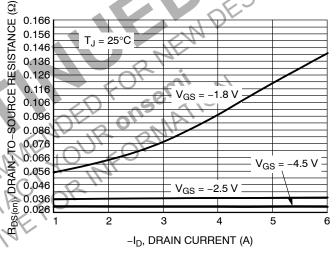
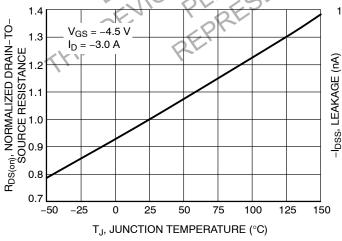



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

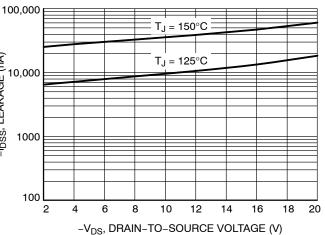
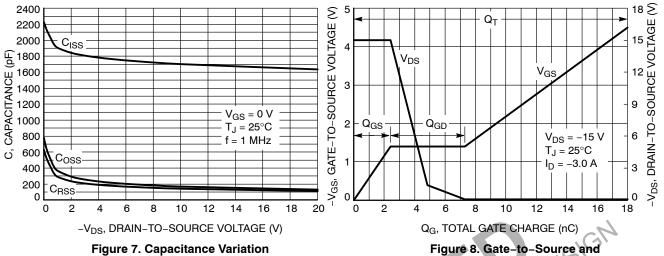



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

Drain-to-Source Voltage vs. Total Charge

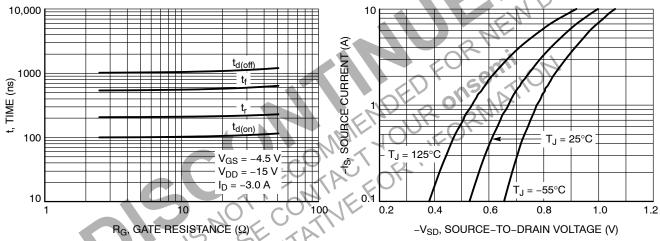


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

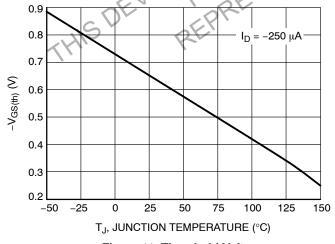


Figure 11. Threshold Voltage

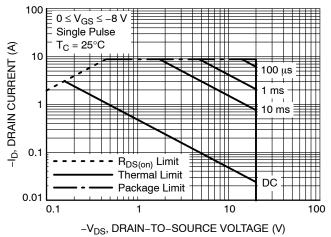
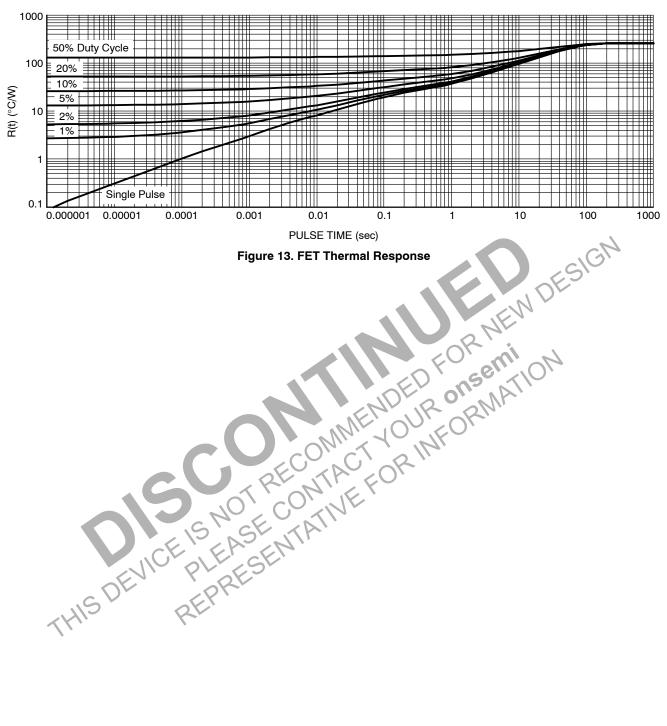



Figure 12. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

MECHANICAL CASE OUTLINE

MILLIMETERS

MIN

0.89

0.01

0.37

0.08

2.80

1.20

1.78

0.30

0.35

2.10

O°

NOM

1.00

0.06

0.44

0.14

2.90

1.30

1.90

0.43

0.54

2.40

PACKAGE DIMENSIONS

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CASE 318 ISSUE AU**

DATE 14 AUG 2024

MAX

1.11

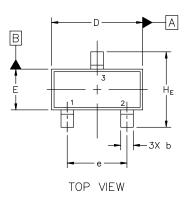
0.10

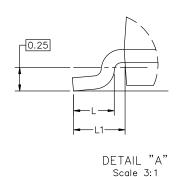
0.50

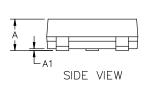
0.20

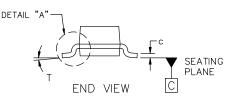
3.04

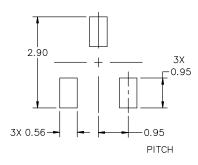
1.40


2.04


0.55


0.69


2.64


10°

NOTES:

DIM

Α

Α1

b

С

D

Ε

е L

L1

HE

Τ

- DIMENSIONING AND TOLERANCING 1.
- PER ASME Y14.5M, 2018. CONTROLLING DIMENSIONS: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE
- BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBE	R: 98ASB42226B	98ASB42226B Electronic versions are uncontrolled except when accessed directly from the Docu Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in		
DESCRIPTIO	N: SOT-23 (TO-236) 2.90x1.3	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P CASE 318 ISSUE AU

DATE 14 AUG 2024

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: STYLE 8: PIN 1. EMITTER PIN 1. ANOD 2. BASE 2. NO CC 3. COLLECTOR 3. CATHO	ONNECTION	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: STYLE 12: PIN 1. ANODE PIN 1. CATHO 2. CATHODE 2. CATHO 3. CATHODE-ANODE 3. ANODO	ODE 2. DRAIN 2. GATE	
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: STYLE 18: PIN 1. NO CONNECTION PIN 1. NO CO 2. ANODE 2. CATHO 3. CATHODE 3. ANODO	ODE 2. ANODE 2. ANODE	
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: STYLE 24: PIN 1. ANODE PIN 1. GATE 2. ANODE 2. DRAIN 3. CATHODE 3. SOURCE		CTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE			

DOCUMENT NUMBER:	98ASB42226B Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.3	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com