

NTS4172NT1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NTS4172NT1G-DG

Manufacturer

onsemi

Manufacturer Product Number

NTS4172NT1G

Description

MOSFET N-CH 30V 1.6A SC70-3

Detailed Description

N-Channel 30 V 1.6A (Ta) 294mW (Ta) Surface Mou

nt SC-70-3 (SOT323)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NTS4172NT1G	onsemi
Series:	Product Status:
	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
30 V	1.6A (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
2.5V, 10V	93mOhm @ 1.7A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
1.4V @ 250μA	4.38 nC @ 4.5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±12V	381 pF @ 15 V
FET Feature:	Power Dissipation (Max):
	294mW (Ta)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
SC-70-3 (SOT323)	SC-70, SOT-323
Base Product Number:	
NTS417	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8541.21.0095

Power MOSFET

30 V, 1.7 A, Single N-Channel, SC-70

Features

- Low On-Resistance
- Low Gate Threshold Voltage
- Halide Free
- This is a Pb-Free Device

Applications

- Low Side Load Switch
- DC-DC Converters (Buck and Boost Circuits)
- Optimized for Battery and Load Management Applications in Portable Equipment like Cell Phones, PDA's, Media Players, etc.

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

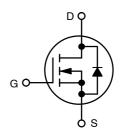
Paramo	Symbol	Value	Unit			
Drain-to-Source Voltage			V_{DSS}	30	V	
Gate-to-Source Voltage			V _{GS}	±12	V	
Continuous Drain	Steady T _A = 25°C			1.6		
Current (Note 1)	State	T _A = 85°C	I_{D}	1.13	Α	
	t ≤ 5 s	T _A = 25°C		1.70		
Power Dissipation	ower Dissipation lote 1)		P_D	0.294		
(Note I)					W	
				0.350		
Pulsed Drain Current	t _p =	10 μs	I _{DM}	3.4	Α	
Operating Junction and S	torage Ter	nperature	T _J ,	-55 to	°C	
			T _{stg}	150		
Source Current (Body Diode)			I _S	0.25	Α	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	425	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	360	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces)



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	93 mΩ @ 10 V	1.7 A
	100 mΩ @ 4.5 V	1.5 A
	140 mΩ @ 2.5 V	1.0 A

SC-70/SOT-323 (3 LEADS)

STYLE 8

MARKING DIAGRAM/ PIN ASSIGNMENT

AA = Specific Device Code M = Date Code*

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTS4172NT1G	SC-70 (Pb-Free)	3000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*} Date code orientation may vary depending upon manufacturing location

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, Reference to 25°C		8.4		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V, T _J = 25°C V _{GS} = 0 V, V _{DS} = 24 V, T _J = 125°C			1.0 5.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			±100	nA
ON CHARACTERISTICS (Note 3)	-					
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.6	1.0	1.4	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			3.1		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 1.7 \text{ A}$		58	93	mΩ
		V _{GS} = 4.5 V, I _D = 1.5 A		64	100	1
		V _{GS} = 2.5 V, I _D = 1.0 A		79	140	1
Forward Transconductance	9FS	V _{DS} = 5.0 V, I _D = 1.7 A		4.2		S
CHARGES, CAPACITANCES AND GA	TE RESISTA	NCE		•	-	•
Input Capacitance	C _{iss}			381		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 15 \text{ V}$		39.6		_
Reverse Transfer Capacitance	C _{rss}	, D2 = 10 t		32.6		
Total Gate Charge	Q _{G(TOT)}			4.38		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V,		0.40		1
Gate-to-Source Charge	Q_{GS}	I _D = 1.7 Å		0.62		1
Gate-to-Drain Charge	Q_{GD}			1.33		1
Gate Resistance	R_{G}			4.5		Ω
SWITCHING CHARACTERISTICS (No	ote 4)					
Turn-On Delay Time	t _{d(on)}			7.5		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} = 15 V,		4.4		1
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 4.5 \text{ V}, V_{DD} = 15 \text{ V}, \\ I_{D} = 1.7 \text{ A}, R_{G} = 3 \Omega$		16.1		1
Fall Time	t _f			2.2		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS					
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 1.0 A		0.76	1.0	V
Reverse Recovery Time	t _{RR}			7.9		ns
Charge Time	t _a	V _{GS} = 0 V, I _S = 1.0 A,		5.0		1
Discharge Time	t _b	$dI_{SD}/d_t = 100 \text{ A/}\mu\text{s}$		2.9		1
Reverse Recovery Charge	Q _{RR}			2.0		nC

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces)
Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%
Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

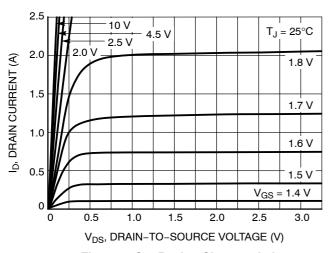


Figure 1. On-Region Characteristics

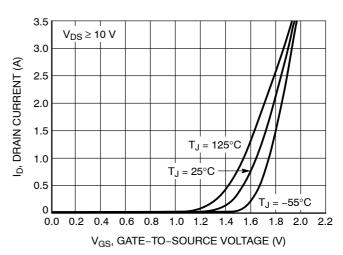


Figure 2. Transfer Characteristics

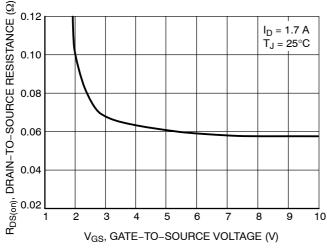


Figure 3. On-Resistance vs. Gate Voltage

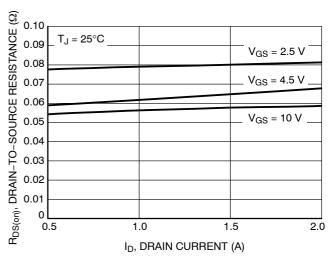


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

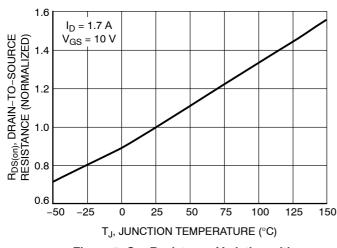


Figure 5. On–Resistance Variation with Temperature

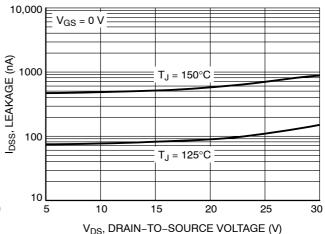


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

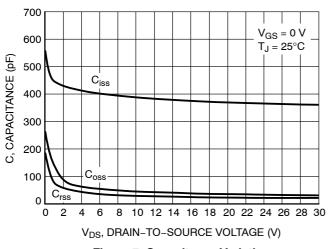
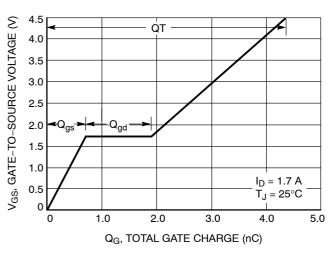



Figure 7. Capacitance Variation

Μ

Figure 8. Gate-to-Source Voltage vs. Total Charge

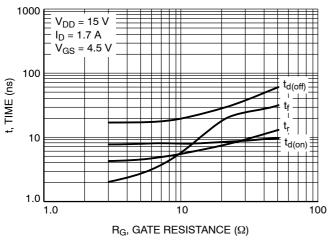


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

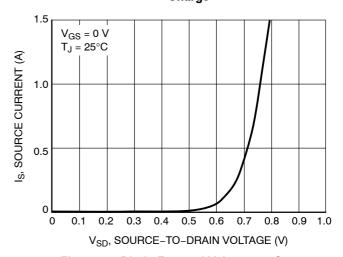
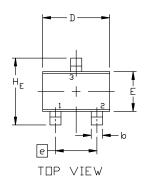
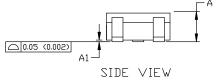
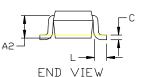


Figure 10. Diode Forward Voltage vs. Current

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS



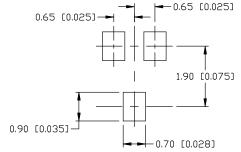

SC-70 (SOT-323) **CASE 419** ISSUE R

DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS				INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF			0.028 BS	C
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC				0.026 BS	C
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095



XX = Specific Device Code

= Date Code М

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the IIN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com