

NVMFD5C478NLWFT1G Datasheet

Di

Mar

www.digi-electronics.com

iGi Electronics Part Number	NVMFD5C478NLWFT1G-DG
Manufacturer	onsemi
nufacturer Product Number	NVMFD5C478NLWFT1G
Description	MOSFET 2N-CH 40V 10.5A 8DFN
Detailed Description	Mosfet Array 40V 10.5A (Ta), 29A (Tc) 3.1W (Ta), 23 W (Tc) Surface Mount 8-DFN (5x6) Dual Flag (SO8FL -Dual)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NVMFD5C478NLWFT1G	onsemi
Series:	Product Status:
-	Active
Technology:	Configuration:
MOSFET (Metal Oxide)	2 N-Channel (Dual)
FET Feature:	Drain to Source Voltage (Vdss):
-	40V
Current - Continuous Drain (ld) @ 25°C:	Rds On (Max) @ ld, Vgs:
10.5A (Ta), 29A (Tc)	14.5mOhm @ 7.5A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
2.2V @ 20µA	8.1nC @ 10V
Input Capacitance (Ciss) (Max) @ Vds:	Power - Max:
420pF @ 25V	3.1W (Ta), 23W (Tc)
Operating Temperature:	Grade:
-55°C ~ 175°C (TJ)	Automotive
Qualification:	Mounting Type:
AEC-Q101	Surface Mount
Package / Case:	Supplier Device Package:
8-PowerTDFN	8-DFN (5x6) Dual Flag (SO8FL-Dual)
Base Product Number:	
NVMFD5	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

onsemi

MOSFET – Power, Dual N-Channel 40 V, 14.5 mΩ, 29 A

NVMFD5C478NL

Features

- Small Footprint (5 x 6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- NVMFD5C478NLWF Wettable Flanks Product
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

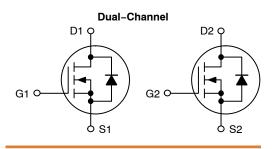
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

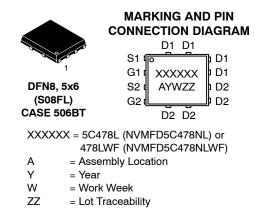
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage	e		V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	29	А
Current R _{θJC} (Notes 1, 2, 3, 4)	Steady	T _C = 100°C		20.6	
Power Dissipation	State	$T_{C} = 25^{\circ}C$	PD	23	W
R _{θJC} (Notes 1, 2, 3)		$T_{C} = 100^{\circ}C$		12	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	10.5	А
Current R _{0JA} (Notes 1 & 3, 4)	Steady	T _A = 100°C		7.5	
Power Dissipation	State	T _A = 25°C	PD	3.1	W
R _{θJA} (Notes 1, 3)		T _A = 100°C		1.5	
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \ \mu s$		I _{DM}	98	А
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)		۱ _S	19	А	
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 1.4 A)		E _{AS}	48	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 3)	$R_{\theta JC}$	6.4	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	48.8	


1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.

3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

4. Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

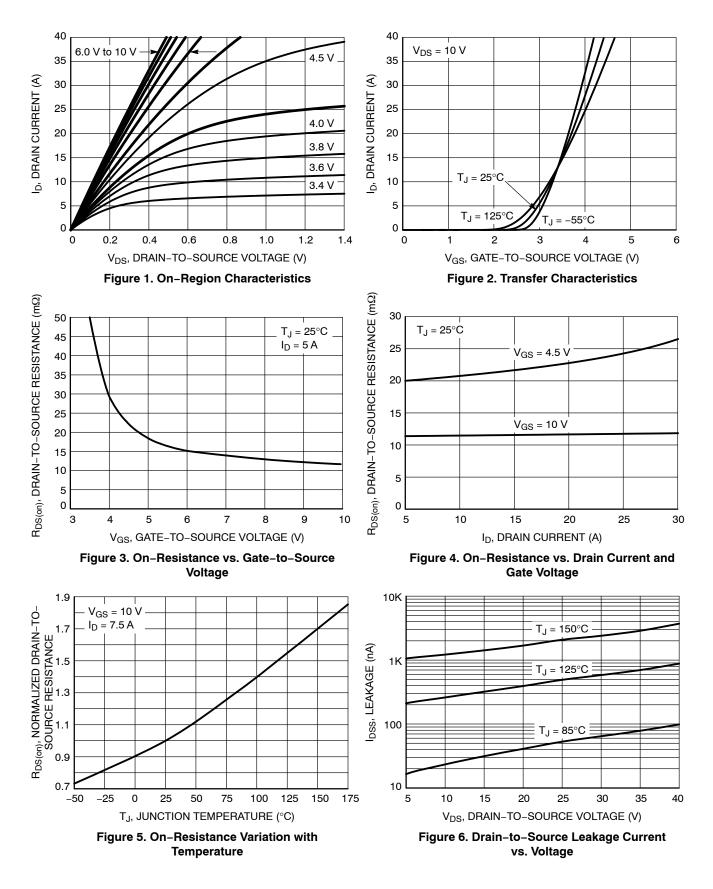
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
40 V	14.5 mΩ @ 10 V	29 A	
40 V	25 mΩ @ 4.5 V		

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

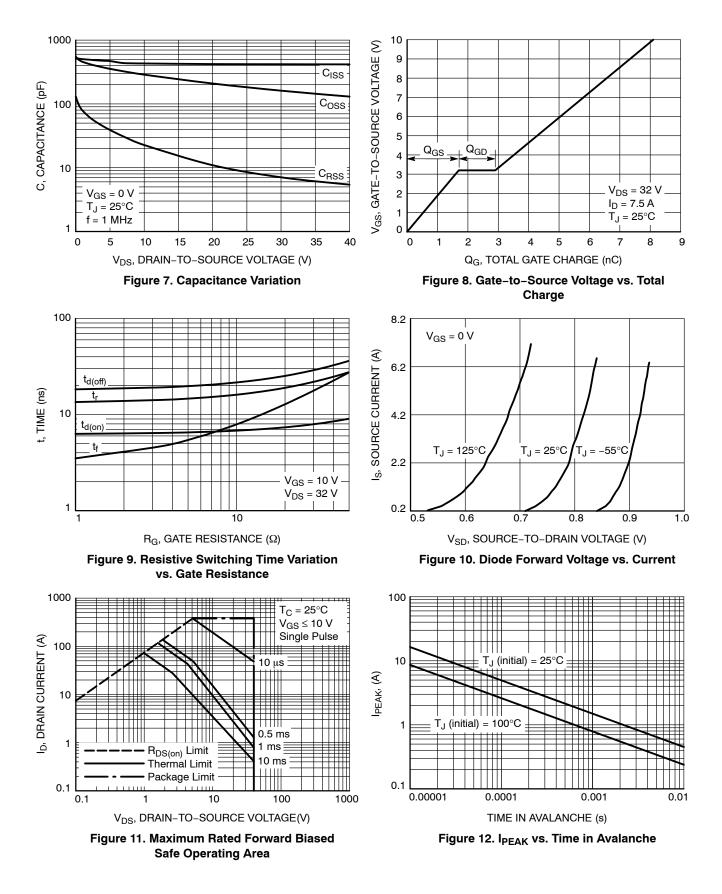
NVMFD5C478NLWFT1G onsemi MOSFET 2N-CH 40V 10.5A 8DFN

NVMFD5C478NL

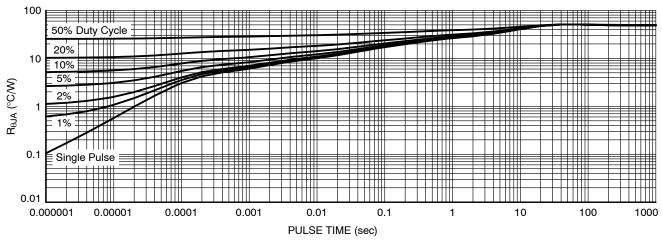

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D) = 250 μA	40			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			10	μA
		$V_{DS} = 40 V$	T _J = 125°C			250	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	_{GS} = 20 V			100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I	_D = 20 μA	1.2		2.2	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 7.5 A		12.1	14.5	mΩ
		V _{GS} = 4.5 V,	I _D = 7.5 A		20	25	
Forward Transconductance	9 _{FS}	V _{DS} = 15 V,	I _D = 15 A		25		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}				420		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = V _{DS} = 2	= 1.0 MHz, 25 V		185		-
Reverse Transfer Capacitance	C _{rss}				9		
Total Gate Charge	Q _{G(TOT)}				8.1		nC
Threshold Gate Charge	Q _{G(TH)}		001/1 754		1.0		nC
Gate-to-Source Charge	Q_{GS}	V _{GS} = 10 V, V _{DS} =	32 V, I _D = 7.5 A		1.7		
Gate-to-Drain Charge	Q _{GD}				1.2		1
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} =	32 V, I _D = 7.5 A		3.9		nC
SWITCHING CHARACTERISTICS (No	te 6)						
Turn-On Delay Time	t _{d(on)}				6		ns
Rise Time	t _r	V _{GS} = 10 V, V	_{DS} = 32 V,		14		1
Turn-Off Delay Time	t _{d(off)}	V _{GS} = 10 V, V I _D = 7.5 A, F	$R_{G} = 1 \Omega$		18		1
Fall Time	t _f				3.5		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V _{SD}	SD $V_{GS} = 0 V$,	$T_J = 25^{\circ}C$		0.84	1.2	V
		I _S = 7.5 A T _J = 125°C			0.72		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dl _S /dt = 100 A/µs, I _S = 7.5 A			17		ns
Charge Time	t _a				7.0		1
Discharge Time	t _b				10		1
Reverse Recovery Charge	Q _{RR}				6		nC

5. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.


NVMFD5C478NL

TYPICAL CHARACTERISTICS


NVMFD5C478NL

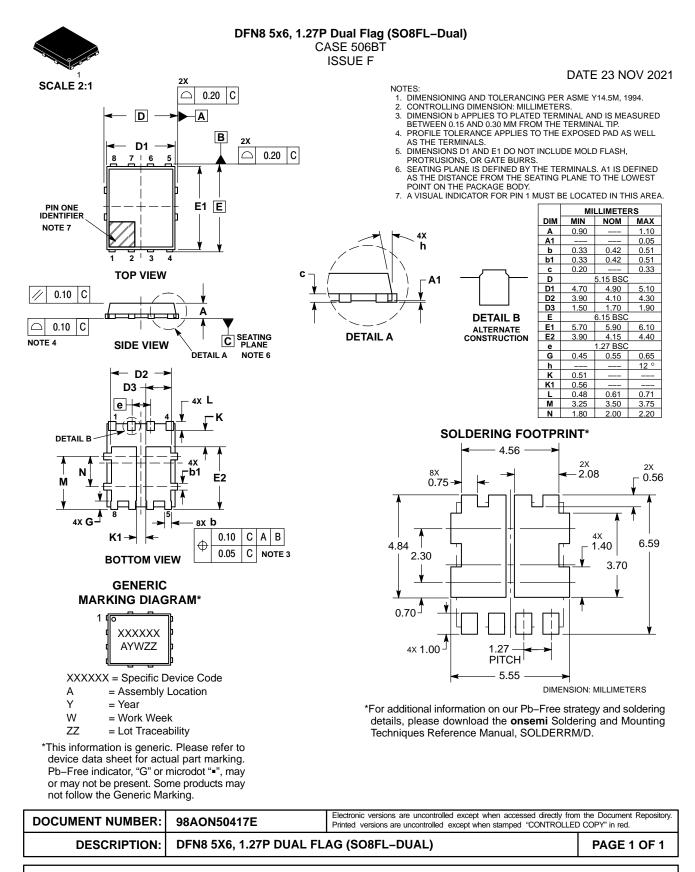
TYPICAL CHARACTERISTICS

NVMFD5C478NL

TYPICAL CHARACTERISTICS

Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION


Device	Marking	Package	Shipping [†]
NVMFD5C478NLT1G	5C478L	DFN8 (Pb–Free)	1500 / Tape & Reel
NVMFD5C478NLWFT1G	478LWF	DFN8 (Pb–Free)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: <u>www.onsemi.com/design/resources/technical-documentation</u> onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.