

NVMFS3D0P04M8LT1G Datasheet

www.digi-electronics.com

NVMFS3D0P04M8LT1G-DG
onsemi
NVMFS3D0P04M8LT1G
MV8 P INITIAL PROGRAM
P-Channel 40 V 28A (Ta), 183A (Tc) 3.9W (Ta), 171W (Tc) Surface Mount 5-DFN (5x6) (8-SOFL)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NVMFS3D0P04M8LT1G	onsemi
Series:	Product Status:
-	Active
FET Type:	Technology:
P-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
40 V	28A (Ta), 183A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
4.5V, 10V	2.7mOhm @ 30A,10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
2.4V @ 2mA	124 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	5827 pF @ 20 V
FET Feature:	Power Dissipation (Max):
-	3.9W (Ta), 171W (Tc)
Operating Temperature:	Grade:
-55°C ~ 175°C (TJ)	Automotive
Qualification:	Mounting Type:
AEC-Q101	Surface Mount
Supplier Device Package:	Package / Case:
5-DFN (5x6) (8-SOFL)	8-PowerTDFN, 5 Leads

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

onsemi

MOSFET - Power, Single P-Channel

-40 V, 2.7 mΩ, -183 A

NVMFS3D0P04M8L

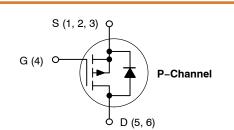
Features

- Low R_{DS(on)} to Minimize Conduction Losses
- High Current Capability
- Avalanche Energy Specified
- NVMFWS3D0P04M8L Wettable Flanks Product
- NVM Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-40	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Cur-		$T_{C} = 25^{\circ}C$	I _D	-183	А
rent $R_{\theta JC}$ (Notes 1, 2, 3)	Steady	$T_{C} = 100^{\circ}C$		-129	
Power Dissipation $R_{\theta JC}$	State	$T_{C} = 25^{\circ}C$	PD	171	W
(Notes 1, 2)		$T_{C} = 100^{\circ}C$		86	
Continuous Drain Cur-	Steady State	$T_A = 25^{\circ}C$	Ι _D	-28	А
rent $R_{\theta JA}$ (Notes 1, 2, 3)		$T_A = 100^{\circ}C$		-19	1
Power Dissipation $R_{\theta JA}$		T _A = 25°C	PD	3.9	W
(Notes 1, 2)		$T_A = 100^{\circ}C$		1.9	1
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	-900	А
Operating Junction and S Range	torage Te	mperature	T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			I _S	-143	А
Single Pulse Drain-to-Sc Energy (I _{L(pk)} = -30 A)	ource Ava	lanche	E _{AS}	752	mJ
Lead Temperature for Sol (1/8" from case for 10 s)	dering Pu	irposes	ΤL	260	°C

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

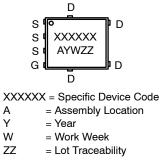

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Drain) (Note 2)	$R_{\theta JC}$	0.9	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	39	°C/W

 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

 Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(on)}	I _D
-40 V	2.7 m Ω @ –10 V	–183 A
-+0 V	4.2 mΩ @ –4.5 V	- 100 A



DFN5 (SO-8FL) CASE 488AA STYLE 1

DFNW5 (FULL-CUT SO8FL WF) CASE 507BA

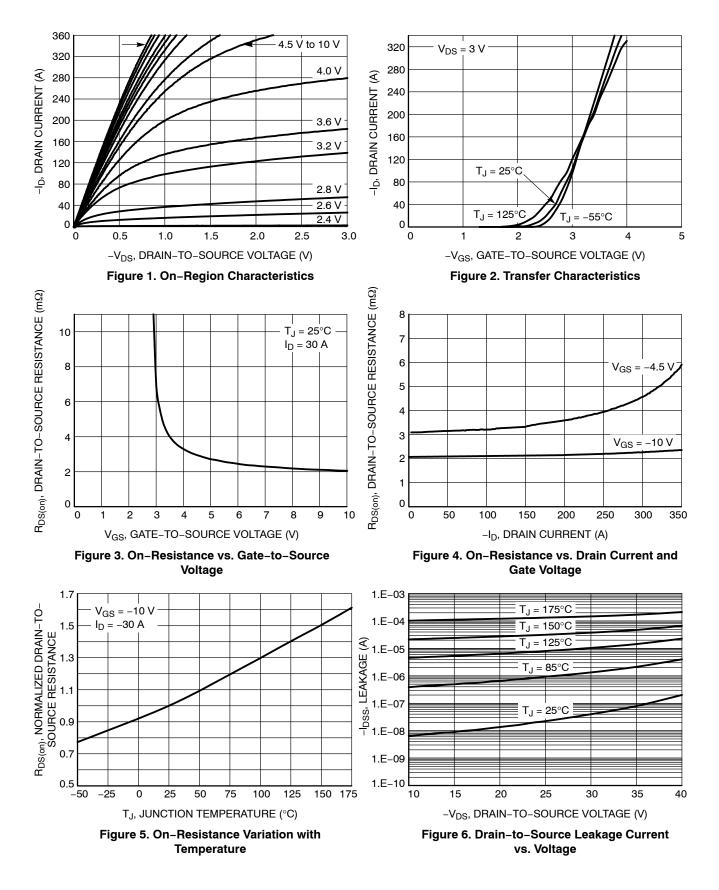
ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

NVMFS3D0P04M8LT1G onsemi MV8 P INITIAL PROGRAM

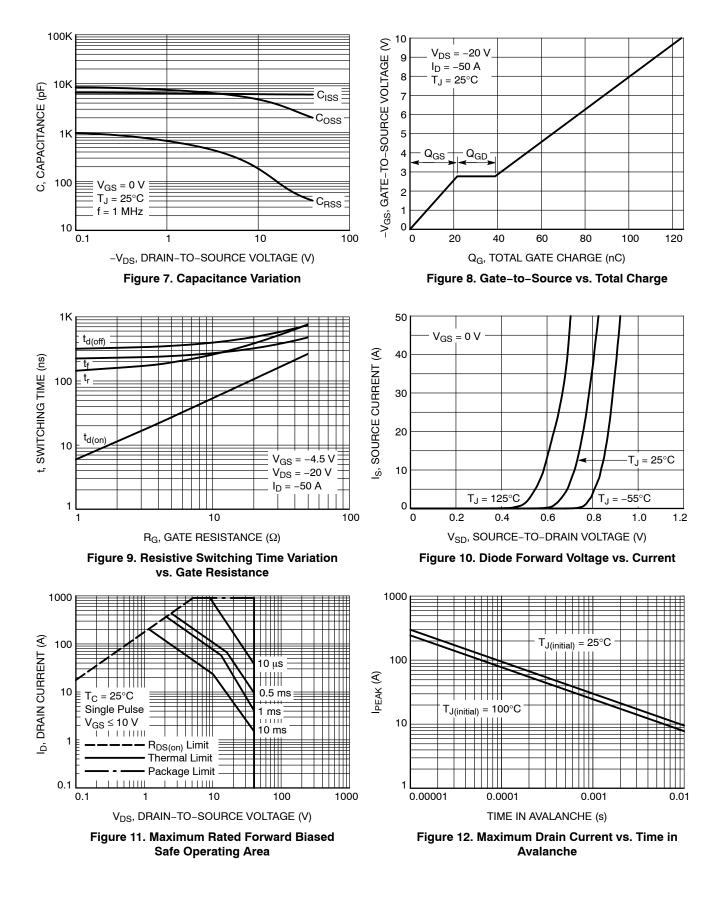
NVMFS3D0P04M8L

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			I			-	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = –250 μ A		-40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				12		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -40 V	T _J = 25°C T _J = 125°C			-1.0 -100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _G	Ĵ			±100	nA
ON CHARACTERISTICS (Note 4)			- I				
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D) = −2 mA	-1.0		-2.4	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-4.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V, I	_D = -30 A		2.1	2.7	mΩ
		V _{GS} = -4.5 V,	l _D = –15 A		3.1	4.2	1
Froward Transconductance	9 _{FS}	V _{DS} = -24 V,	_D = -50 A		205		S
CHARGES AND CAPACITANCES	· · ·						
Input Capacitance	C _{iss}	$V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = -20 V$			5827		pF
Output Capacitance	C _{oss}				3225		1
Reverse Transfer Capacitance	C _{rss}		ľ		85.8		1
Total Gate Charge	Q _{G(TOT)}	$V_{DS} = -20 V$, $V_{GS} = -4.5 V$	58.7		nC		
		$I_{\rm D} = -50 \rm{A}$	V _{GS} = -10 V		124		
Threshold Gate Charge	Q _{G(TH)}				10.9		
Gate-to-Source Charge	Q _{GS}	V _{GS} = -10 V, V _I	-20 V.		21.6		
Gate-to-Drain Charge	Q _{GD}	$I_D = -5$	0 A		17.3		
Plateau Voltage	V _{GP}				2.8		V
SWITCHING CHARACTERISTICS (No	otes 4)						
Turn-On Delay Time	t _{d(on)}				15.8		ns
Rise Time	t _r	V _{GS} = -4.5 V, V	−20 V.		161		
Turn–Off Delay Time	t _{d(off)}	$I_{\rm D} = -50 \rm A, R_{\rm H}$	_G = 2.5 Ω		349		
Fall Time	t _f				256		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$		-0.75	-1.20	V
		I _S = –15 A	T _J = 125°C		-0.61		1
Reverse Recovery Time	t _{RR}		-		113		ns
Charge Time	t _a	V _{GS} = 0 V, dl _s /dt	: = 100 A/us.		59.4		1
Discharge Time	t _b	$I_s = -50$	ΟA		53.1		1
Reverse Recovery Charge	Q _{RR}		1		246		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.


NVMFS3D0P04M8L

TYPICAL CHARACTERISTICS

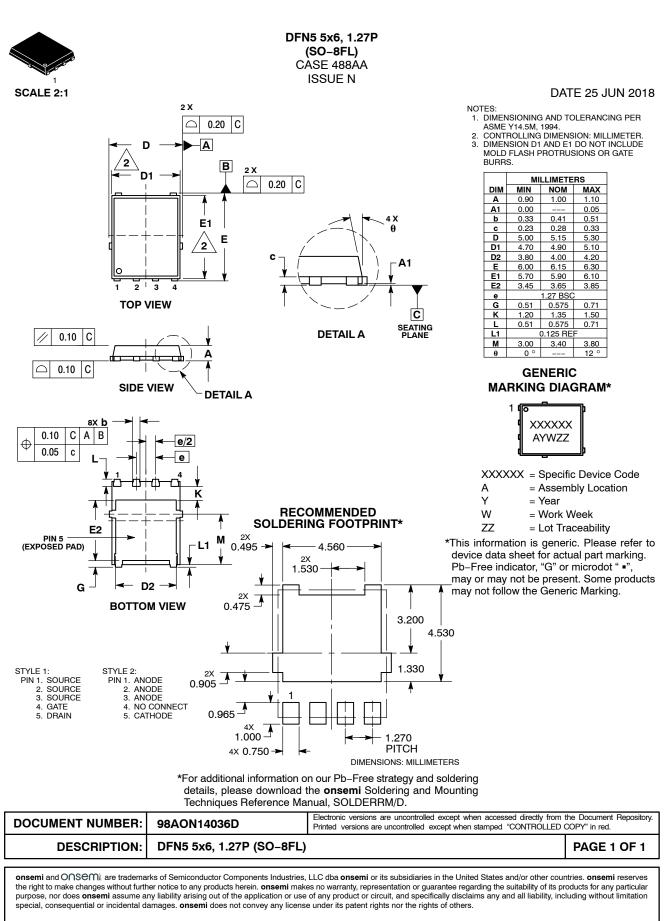
NVMFS3D0P04M8L

TYPICAL CHARACTERISTICS

NVMFS3D0P04M8L

TYPICAL CHARACTERISTICS

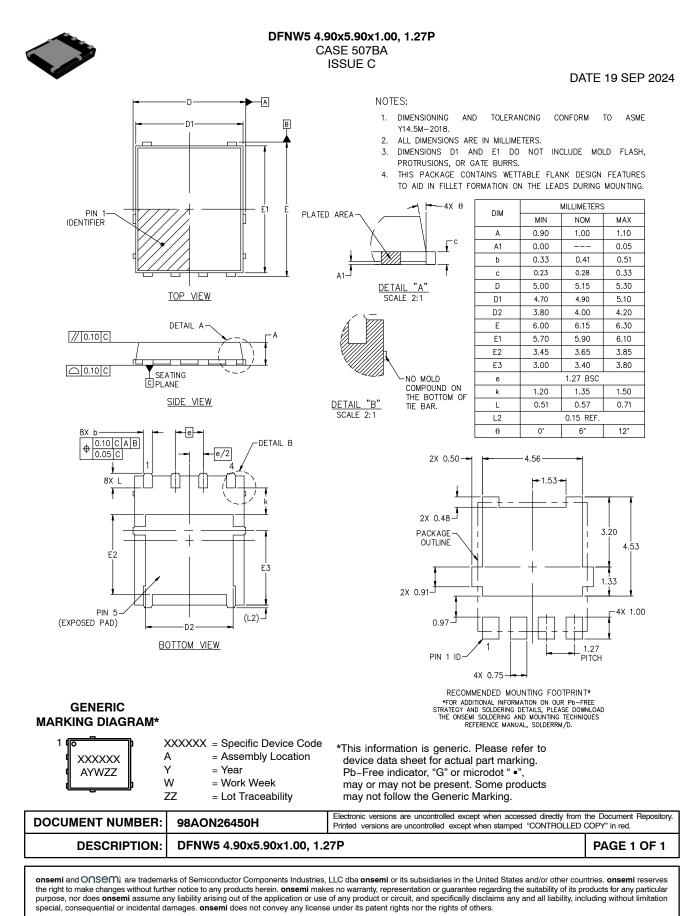



Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS3D0P04M8LT1G	3D0P04	DFN5 (Pb–Free)	1500 / Tape & Reel
NVMFWS3D0P04M8LT1G	3D0P4W	DFNW5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

NVMFS3D0P04M8LT1G onsemi MV8 P INITIAL PROGRAM

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.