

NVMFS5C410NAFT3G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NVMFS5C410NAFT3G-DG

Manufacturer onsemi

Manufacturer Product Number NVMFS5C410NAFT3G

Description MOSFET N-CH 40V 46A/300A 5DFN

Detailed Description N-Channel 40 V 46A (Ta), 300A (Tc) 3.9W (Ta), 166W

(Tc) Surface Mount 5-DFN (5x6) (8-SOFL)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NVMFS5C410NAFT3G	onsemi
Series:	Product Status:
	Not For New Designs
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
40 V	46A (Ta), 300A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
10V	0.92mOhm @ 50A, 10V
Vgs(th) (Max) @ Id:	Gate Charge (Qg) (Max) @ Vgs:
3.5V @ 250µA	86 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	6100 pF @ 25 V
FET Feature:	Power Dissipation (Max):
	3.9W (Ta), 166W (Tc)
Operating Temperature:	Grade:
-55°C ~ 175°C (TJ)	Automotive
Qualification:	Mounting Type:
AEC-Q101	Surface Mount
Supplier Device Package:	Package / Case:
5-DFN (5x6) (8-SOFL)	8-PowerTDFN, 5 Leads
Base Product Number:	
NVMFS5	

Environmental & Export classification

8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

www.onsemi.com

MOSFET – Power, Single N-Channel

40 V, 0.92 m Ω , 300 A

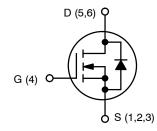
NVMFS5C410N

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS5C410NWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

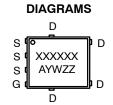
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Value	Unit		
Drain-to-Source Voltage			40	V
Gate-to-Source Voltage			±20	V
Continuous Drain		T _C = 25°C	300	Α
Current R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C	212	
Power Dissipation R _{θJC} (Note 1)	State	T _C = 25°C	166	W
		T _C = 100°C	83	
Continuous Drain		T _A = 25°C	46	Α
Current R _{0JA} (Notes 1, 2, 3)	Steady	T _A = 100°C	32	
Power Dissipation R _{θJA} (Notes 1,	State	T _A = 25°C	3.9	W
2)			1.9	
Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	900	Α
Operating Junction and Storage Temperature Range				ç
Source Current (Body Diode)				Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 34 A)			578	mJ
Lead Temperature for Soldering Pu (1/8" from case for 10 s)	irposes		260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State	0.9	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Note 2)	39	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	0.92 m Ω @ 10 V	300 A

N-CHANNEL MOSFET

MARKING

XXXXXX = 5C410N

(NVMFS5C410N) or

410NWF

= Lot Traceability

(NVMFS5C410NWF)

A = Assembly Location

Y = Year W = Work Week

ZΖ

DFNW5 (SO-8FL WF) CASE 507BA

XXXXXX = Specific Device Code

A = Assembly Location

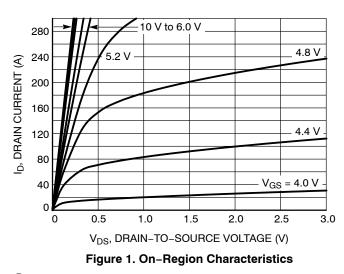
Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Symbol	Parameter	Test Cond	Test Condition		Тур	Max	Unit
OFF CHARA	ACTERISTICS	•		•	•	•	•
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V _{GS} = 0 V, I _D =	= 250 μA	40			٧
V _{(BR)DSS} /	Drain-to-Source Breakdown Voltage Temperature Coefficient				5		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V,	T _J = 25 °C			10	μΑ
		V _{DS} = 40 V	T _J = 125°C			100	
I _{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 V, V_{G}$	_S = 20 V			100	nA
ON CHARA	CTERISTICS (Note 4)						
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	2.5		3.5	V
V _{GS(TH)} /T _J	Threshold Temperature Coefficient				-8.6		mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V	I _D = 50 A		0.76	0.92	mΩ
9 _{FS}	Forward Transconductance	V _{DS} =15 V, I _D	= 50 A		190		S
CHARGES,	CAPACITANCES & GATE RESISTANCE						
C _{ISS}	Input Capacitance		V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V		6100		pF
C _{OSS}	Output Capacitance	V _{GS} = 0 V, f = 1 MH			3400		1
C _{RSS}	Reverse Transfer Capacitance				70		1
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 10 V, V _{DS} = 3	V _{GS} = 10 V, V _{DS} = 32 V; I _D = 50 A		86		nC
Q _{G(TH)}	Threshold Gate Charge				18		1
Q _{GS}	Gate-to-Source Charge	.,,	V _{GS} = 10 V, V _{DS} = 32 V; I _D = 50 A		28		1
Q_{GD}	Gate-to-Drain Charge	$V_{GS} = 10 \text{ V}, V_{DS} = 3$			14		1
V _{GP}	Plateau Voltage				4.9		V
SWITCHING	CHARACTERISTICS (Note 5)						•
t _{d(ON)}	Turn-On Delay Time				54		ns
t _r	Rise Time	V _{GS} = 10 V, V _D	se = 32 V.		162		1
t _{d(OFF)}	Turn-Off Delay Time	I _D = 50 A, R _G	$= 2.5 \Omega$		227		1
t _f	Fall Time				173		
DRAIN-SOL	JRCE DIODE CHARACTERISTICS	1					
V_{SD}	Forward Diode Voltage	V _{GS} = 0 V,	T _J = 25°C		0.8	1.2	V
		I _S = 50 A	T _J = 125°C		0.65		1
t _{RR}	Reverse Recovery Time		1		91		ns
t _a	Charge Time	V _{GS} = 0 V, dIS/dt	– 100 A/us		42		1
t _b	Discharge Time	$I_{\rm S} = 50$			49		1
Q _{RR}	Reverse Recovery Charge				159		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

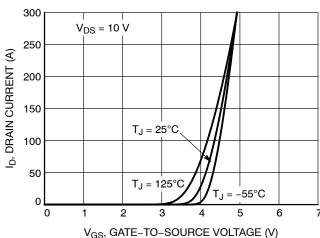
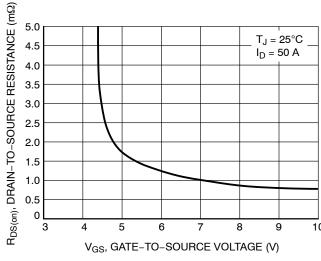



Figure 2. Transfer Characteristics

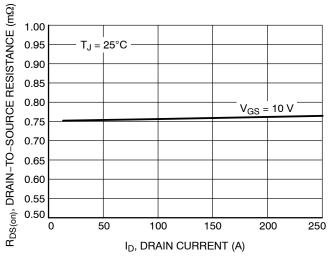
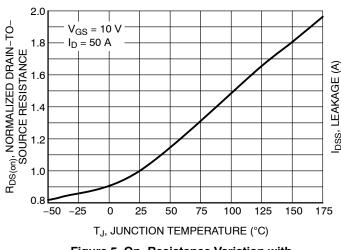



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

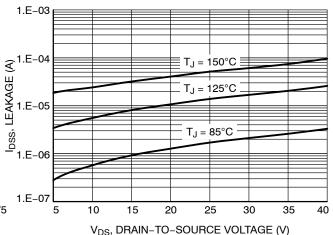
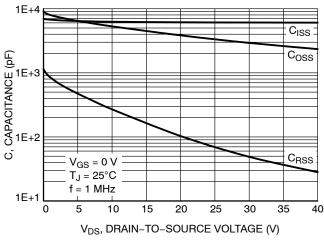
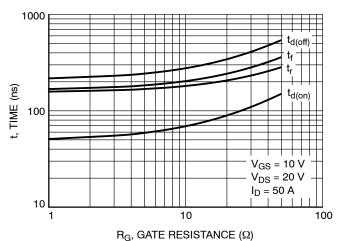



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage


TYPICAL CHARACTERISTICS (continued)

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) 9 8 7 6 Q_{GS} Q_{GD} 5 3 $V_{DS} = 20 \text{ V}$ $T_J = 25^{\circ}C$ $I_{D} = 50 \text{ A}$ 10 20 50 70 Q_G, GATE CHARGE (nC)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Charge

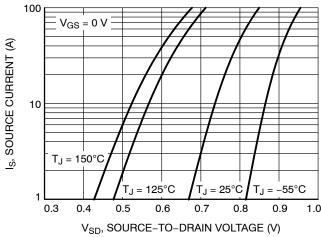
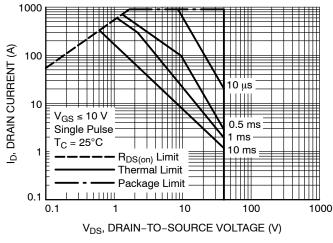



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

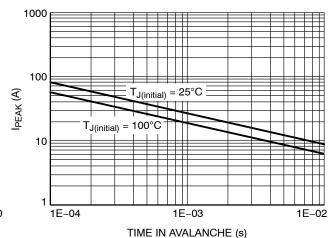


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. $I_{\mbox{\scriptsize PEAK}}$ vs. Time in Avalanche

TYPICAL CHARACTERISTICS (continued)

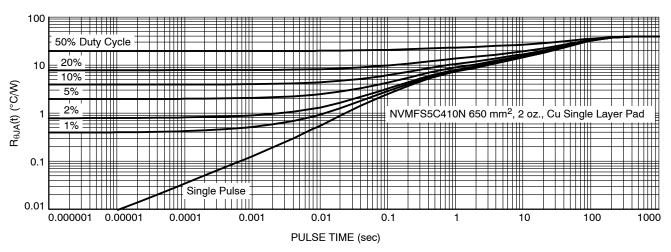


Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS5C410NT1G	5C410N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C410NWFT1G	410NWF	DFN5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS5C410NAFT1G	5C410N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C410NWFAFT1G	410NWF	DFN5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS5C410NWFET1G	410NWF	DFN5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

DISCONTINUED (Note 6)

NVMFS5C410NWFT3G	410NWF	DFN5 (Pb-Free, Wettable Flanks)	5000 / Tape & Reel
NVMFS5C410NT3G	5C410N	DFN5 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{6.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA **ISSUE N**

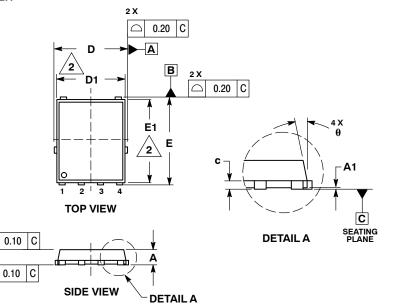
DATE 25 JUN 2018

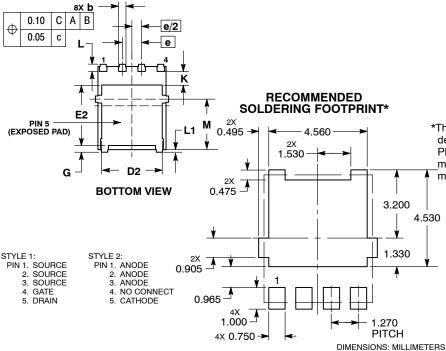
NOTES:

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION D1 AND E1 DO NOT INCLUDE
- MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
Е	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е		1.27 BSC	;	
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
М	3.00	3.40	3.80	
θ	0 °		12 °	

GENERIC MARKING DIAGRAM*




XXXXXX = Specific Device Code

= Assembly Location Α

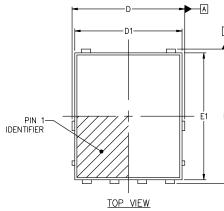
Υ = Year W = Work Week = Lot Traceability ZZ

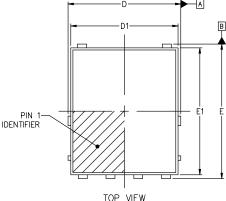
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

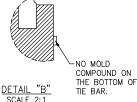

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS

DFNW5 4.90x5.90x1.00, 1.27P CASE 507BA **ISSUE C**

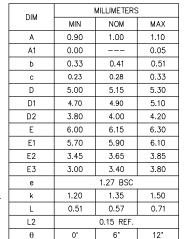
DATE 19 SEP 2024

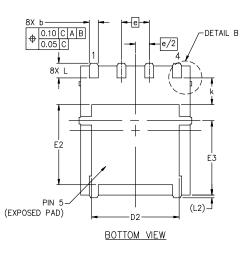
DETAIL A

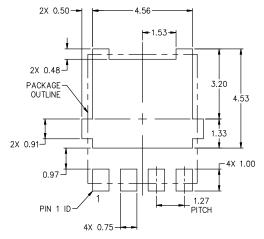

SIDE VIEW

SEATING

PLANE


PLATED AREA




DETAIL "A' SCALE 2:1

NOTES:

- DIMENSIONING AND TOLERANCING TO ASME Y14.5M-2018.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- .3. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- THIS PACKAGE CONTAINS WETTABLE FLANK DESIGN FEATURES TO AID IN FILLET FORMATION ON THE LEADS DURING MOUNTING.

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR PD-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

// 0.10 C

△ 0.10 C

XXXXXX = Specific Device Code = Assembly Location Α

Υ = Year

W = Work Week ZZ = Lot Traceability *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON26450H	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DFNW5 4.90x5.90x1.00, 1.2	DFNW5 4.90x5.90x1.00, 1.27P	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com