

NVMFS6B03NT1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number NVMFS6B03NT1G-DG

Manufacturer onsemi

Manufacturer Product Number NVMFS6B03NT1G

Description MOSFET N-CH 100V 132A 5DFN

Detailed Description N-Channel 100 V 145A (Tc) 3.9W (Ta), 198W (Tc) Su

rface Mount 5-DFN (5x6) (8-SOFL)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
NVMFS6B03NT1G	onsemi
Series:	Product Status:
	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
100 V	145A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
10V	4.8mOhm @ 20A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
4V @ 250μA	58 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±16V	4200 pF @ 50 V
FET Feature:	Power Dissipation (Max):
	3.9W (Ta), 198W (Tc)
Operating Temperature:	Grade:
-55°C ~ 175°C (TJ)	Automotive
Qualification:	Mounting Type:
AEC-Q101	Surface Mount
Supplier Device Package:	Package / Case:
5-DFN (5x6) (8-SOFL)	8-PowerTDFN, 5 Leads
Base Product Number:	
NVMES6	

Environmental & Export classification

8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Power MOSFET

100 V, 4.8 m Ω , 145 A, Single N-Channel

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS6B03NWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

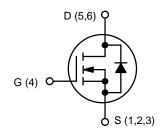
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

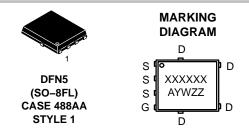
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	100	V
Gate-to-Source Voltage	Э		V_{GS}	±16	V
Continuous Drain Current R _{B.IC} (Notes 1, 2,		T _C = 25°C	I _D	145	Α
3)	Steady	T _C = 100°C		102	
Power Dissipation	State	T _C = 25°C	P _D	198	W
R _{θJC} (Notes 1, 2)		T _C = 100°C		99	
Continuous Drain Cur-		T _A = 25°C	I _D	20	Α
rent R _{θJA} (Notes 1, 2, 3)	Steady	T _A = 100°C		14	
Power Dissipation	State	T _A = 25°C	P_{D}	3.9	W
R _{θJA} (Notes 1 & 2)		T _A = 100°C		2.0	
Pulsed Drain Current $T_A = 25^{\circ}C$, $t_p = 10 \mu s$		I _{DM}	520	Α	
Operating Junction and Storage Temperature		T _J , T _{stg}	-55 to + 175	°C	
Source Current (Body Diode)			I _S	160	Α
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 50 V, V _{GS} = 10 V, $I_{L(pk)}$ = 60 A, L = 0.1 mH, R_G = 25 Ω)			E _{AS}	180	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	0.76	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	38	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	4.8 m Ω @ 10 V	145 A

N-CHANNEL MOSFET

A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS						•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				67.3		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			10	
		V _{DS} = 80 V	T _J = 125°C			100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 16 V				100	nA
ON CHARACTERISTICS (Note 4)					-		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-8.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		3.8	4.8	mΩ
CHARGES, CAPACITANCES & GATE RESIS	STANCE		•			•	•
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			4200		
Output Capacitance	C _{OSS}				760		pF
Reverse Transfer Capacitance	C _{RSS}				31		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 80 \text{ V}; I_D = 50 \text{ A}$			58		
Threshold Gate Charge	Q _{G(TH)}				6.2		
Gate-to-Source Charge	Q _{GS}				19		nC
Gate-to-Drain Charge	Q_{GD}				17		
Plateau Voltage	V_{GP}				5.4		V
Gate Resistance	R_{G}	T _J = 25°C			1.0		Ω
SWITCHING CHARACTERISTICS (Note 5)						•	•
Turn-On Delay Time	t _{d(ON)}				16		
Rise Time	t _r	V _{GS} = 10 V, V _{DS}	s = 80 V.		46		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 50 \text{ A}, R_G = 1.0 \Omega$			29		ns
Fall Time	t _f				11		
DRAIN-SOURCE DIODE CHARACTERISTIC	S				-		
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.9	1.2	.,,
		$I_S = 50 \text{ A}$ $T_J = 12$	T _J = 125°C		0.8		V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 25 \text{ A}$			67		
Charge Time	t _a				35		ns
Discharge Time	t _b				31		
Reverse Recovery Charge	Q _{RR}				120		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

^{5.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

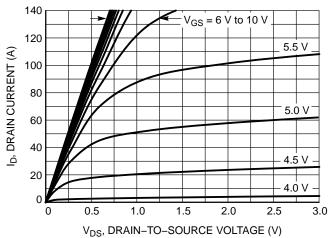


Figure 1. On-Region Characteristics

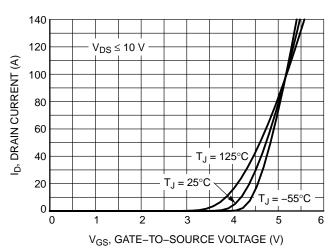


Figure 2. Transfer Characteristics

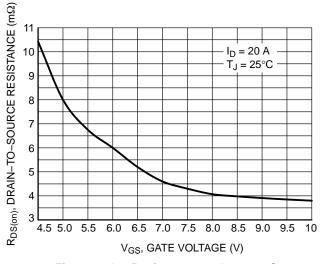


Figure 3. On–Resistance vs. Gate–to–Source Voltage

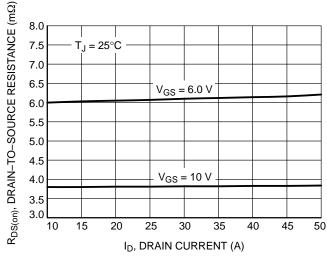


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

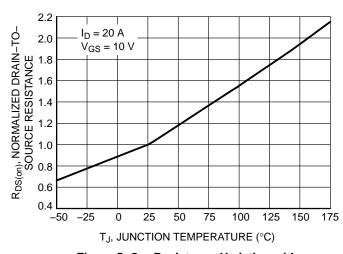


Figure 5. On–Resistance Variation with Temperature

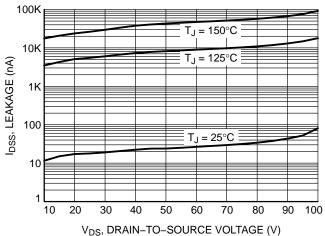


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

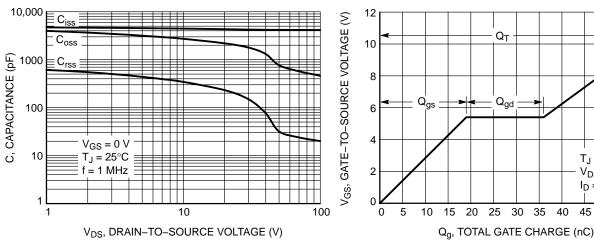


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

30 35 40 45

 $T_J = 25^{\circ}C$

 $V_{DS} = 50 \text{ V}$ $I_{D} = 50 \text{ A}$

50 55 60

 Q_T

 Q_{gd}

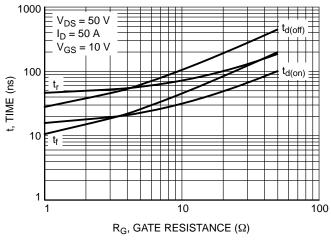


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

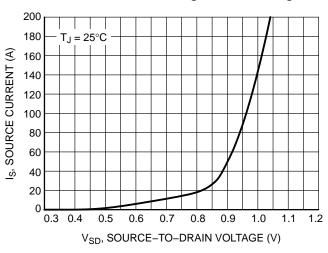
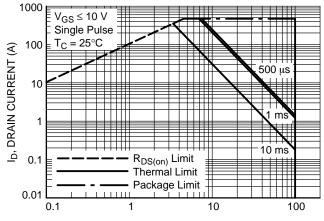



Figure 10. Diode Forward Voltage vs. Current

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

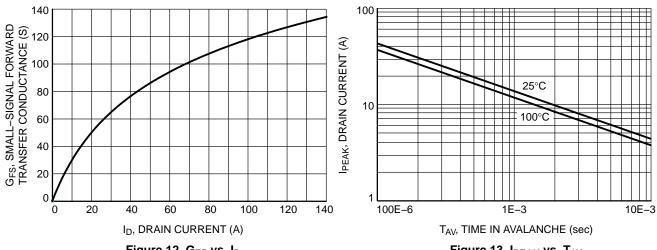


Figure 12. G_{FS} vs. I_D

Figure 13. I_{PEAK} vs. T_{AV}

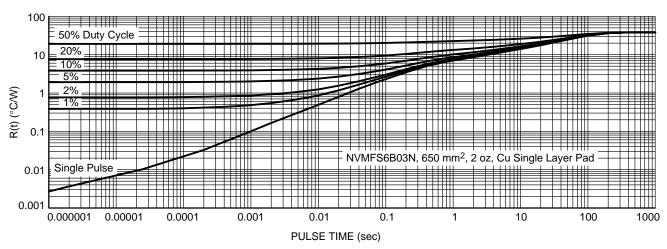


Figure 14. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS6B03NT1G	6B03N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS6B03NWFT1G	6B03WF	DFN5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS6B03NT3G	6B03	DFN5 (Pb-Free)	5000 / Tape & Reel
NVMFS6B03NWFT3G	6B03WF	DFN5 (Pb-Free, Wettable Flanks)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

0.10

0.10

8X b

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA **ISSUE N**

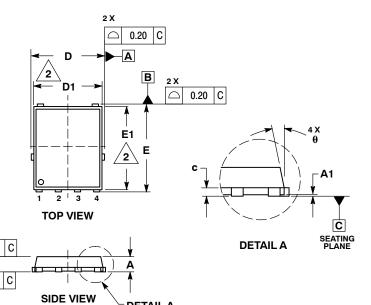
DATE 25 JUN 2018

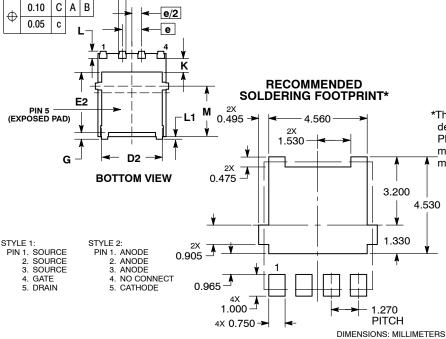
NOTES:

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION D1 AND E1 DO NOT INCLUDE
- MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е	1.27 BSC			
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
М	3.00	3.40	3.80	
θ	0 °		12 °	

GENERIC MARKING DIAGRAM*




XXXXXX = Specific Device Code

= Assembly Location Α

Υ = Year W = Work Week = Lot Traceability ZZ

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human b

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com