

74LVC16245ADGVRE4 Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number 74LVC16245ADGVRE4-DG

Manufacturer Texas Instruments

Manufacturer Product Number 74LVC16245ADGVRE4

Description IC TXRX NON-INVERT 3.6V 48TVSOP

Detailed Description Transceiver, Non-Inverting 2 Element 8 Bit per Elem

ent 3-State Output 48-TVSOP

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74LVC16245ADGVRE4	Texas Instruments
Series:	Product Status:
74LVC	Discontinued at Digi-Key
Logic Type:	Number of Elements:
Transceiver, Non-Inverting	2
Number of Bits per Element:	Input Type:
8	
Output Type:	Current - Output High, Low:
3-State	24mA, 24mA
Voltage - Supply:	Operating Temperature:
1.65V ~ 3.6V	-40°C ~ 125°C (TA)
Mounting Type:	Package / Case:
Surface Mount	48-TFSOP (0.173", 4.40mm Width)
Supplier Device Package:	Base Product Number:
48-TVSOP	74LVC16245

Environmental & Export classification

8542.39.0001

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

SN74LVC16245A

SCES062Q - DECEMBER 1995-REVISED JUNE 2014

SN74LVC16245A 16-Bit Bus Transceiver With 3-State Outputs

Features

- Member of the Texas Instruments Widebus™ Family
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) $< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

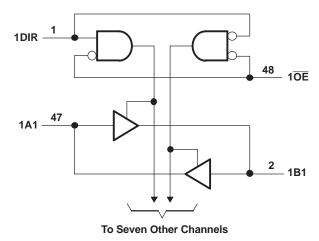
2 Applications

- Electronic Points of Sale
- Printers and Other Peripherals
- Motor Drives
- Wireless and Telecom Infrastructures
- Wearable Health and Fitness Devices

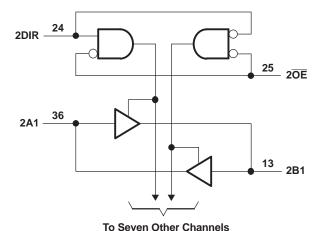
3 Description

This 16-bit (dual-octal) noninverting bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

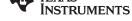
The SN74LVC16245A device is designed for asynchronous communication between data buses.


This device can be used as two 8-bit transceivers or one 16-bit transceiver.

Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LVC16245A	TSSOP (48)	12.50 mm × 6.10 mm
	TVSOP (48)	9.70 mm × 4.40 mm
	SSOP (48)	15.88 mm × 7.49 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.


Simplified Schematic

Pin numbers shown are for the DGG, DGV, and DL packages.

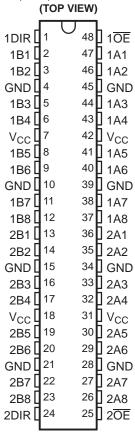
www.ti.com

Ta	hl	Δ	af (ᡣ	nto	ents
ıa	νı	\boldsymbol{c}	UI '	UU	חונכ	HUS

1	Features 1	9 Detailed Description 1
2	Applications 1	9.1 Overview 1
3	Description 1	9.2 Functional Block Diagram 1
4	Simplified Schematic 1	9.3 Feature Description1
5	Revision History2	9.4 Device Functional Modes1
6	Pin Configuration and Functions	10 Application and Implementation 12
7	Specifications	10.1 Application Information 1
•	7.1 Absolute Maximum Ratings	10.2 Typical Application
	7.1 Absolute Maximum Ratings	11 Power Supply Recommendations
	7.3 Recommended Operating Conditions	12 Layout 14
	7.4 Thermal Information	12.1 Layout Guidelines 14
	7.5 Electrical Characteristics—DC Limit Changes 8	12.2 Layout Example 14
	7.6 Switching Characteristics, –40°C TO 85°C	13 Device and Documentation Support 14
	7.7 Switching Characteristics, –40°C TO 125°C 9	13.1 Trademarks 14
	7.8 Operating Characteristics	13.2 Electrostatic Discharge Caution 14
	7.9 Typical Characteristics	13.3 Glossary14
8	Parameter Measurement Information 10	14 Mechanical, Packaging, and Orderable Information14

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


C	hanges from Revision P (January 2014) to Revision Q	Page
•	Updated I _{off} Feature	1
•	Added Applications	1
•	Added Device Information table.	1
•	Added Handling Ratings table	6
•	Added Thermal Information table.	7
•	Added –40°C TO 125°C temperature range to Electrical Characteristics table	8
•	Added Switching Characteristics table for –40°C TO 125°C temperature range	<u>9</u>
•	Added Typical Characteristics.	<u>S</u>

C	hanges from Revision O (January 2008) to Revision P	Page
•	Updated document to new TI data sheet format	1
•	Deleted Ordering Information table.	1
•	Changed MAX operating free-air temperature from 85°C to 125°C.	7

SCES062Q - DECEMBER 1995-REVISED JUNE 2014

6 Pin Configuration and Functions

DGG, DGV, OR DL PACKAGE

Pin Functions

PIN		1/0	DESCRIPTION	
NO.	NAME	1/0	DESCRIPTION	
1	1DIR	_	Direction pin 1	
2	1B1	I/O	1B1 input or output	
3	1B2	I/O	1B2 input or output	
4	GND	_	Ground pin	
5	1B3	I/O	1B3 input or output	
6	1B4	I/O	1B4 input or output	
7	VCC	_	Power pin	
8	1B5	I/O	1B5 input or output	
9	1B6	I/O	1B6 input or output	
10	GND	_	Ground pin	
11	1B7	I/O	1B7 input or output	
12	1B8	I/O	1B8 input or output	
13	2B1	I/O	2B1 input or output	
14	2B2	I/O	2B2 input or output	
15	GND	_	Ground pin	
16	2B3	I/O	2B3 input or output	
17	2B4	I/O	2B4 input or output	
18	VCC	_	Power pin	

Copyright © 1995–2014, Texas Instruments Incorporated

www.ti.com

Pin Functions (continued)

	PIN	1/0	PEOPLETION
NO.	NAME	1/0	DESCRIPTION
19	2B5	I/O	2B5 input or output
20	2B6	I/O	2B6 input or output
21	GND	_	Ground pin
22	2B7	I/O	2B7 input or output
23	2B8	I/O	2B8 input or output
24	2DIR	_	Direction pin 2
25	2 OE	1	Output Enable 2
26	2A8	I/O	2A8 input or output
27	2A7	I/O	2A7 input or output
28	GND	_	Ground pin
29	2A6	I/O	2A6 input or output
30	2A5	I/O	2A5 input or output
31	VCC	_	Power pin
32	2A4	I/O	2A4 input or output
33	2A3	I/O	2A3 input or output
34	GND	_	Ground pin
35	2A2	I/O	2A2 input or output
36	2A1	I/O	2A1 input or output
37	1A8	I/O	1A8 input or output
38	1A7	I/O	1A7 input or output
39	GND	_	Ground pin
40	1A6	I/O	1A6 input or output
41	1A5	I/O	1A5 input or output
42	VCC	_	Power pin
43	1A4	I/O	1A4 input or output
44	1A3	I/O	1A3 input or output
45	GND	_	Ground pin
46	1A2	I/O	1A2 input or output
47	1A1	I/O	1A1 input or output
48	1 OE	1	Output Enable 1

Submit Documentation Feedback

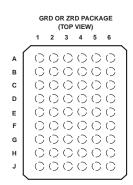

Copyright © 1995–2014, Texas Instruments Incorporated

Table 1. Pin Assignments⁽¹⁾ (56-Ball GQL or ZQL Package)

	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1 OE
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	V _{CC}	V _{CC}	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
E	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
Н	2B5	2B6	V _{CC}	V _{CC}	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
K	2DIR	NC	NC	NC	NC	2 OE

(1) NC - No internal connection

Table 2. Pin Assignments⁽¹⁾ (54-Ball GRD or ZRD Package)

	1	2	3	4	5	6
Α	1B1	NC	1DIR	1 OE	NC	1A1
В	1B3	1B2	NC	NC	1A2	1A3
С	1B5	1B4	V _{CC}	V_{CC}	1A4	1A5
D	1B7	1B6	GND	GND	1A6	1A7
E	2B1	1B8	GND	GND	1A8	2A1
F	2B3	2B2	GND	GND	2A2	2A3
G	2B5	2B4	V _{CC}	V_{CC}	2A4	2A5
Н	2B7	2B6	NC	NC	2A6	2A7
J	2B8	NC	2DIR	2 OE	NC	2A8

(1) NC - No internal connection

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range (2)		-0.5	6.5	V
Vo	Voltage range applied to any output in the high	Voltage range applied to any output in the high-impedance or power-off state (2)		6.5	V
Vo	Voltage range applied to any output in the high or low state (2)(3)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	Input clamp current V _I < 0		-50	mA
I _{OK}	Output clamp current V _O < 0			-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GND			±100	mA

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	e	-65	150	°C
V _(ESD) Electrosta	Flootroctotic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)		2000	V
	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	IEDEC specification 0		V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Submit Documentation Feedback

Copyright © 1995–2014, Texas Instruments Incorporated

²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the Recommended Operating Conditions table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

SCES062Q - DECEMBER 1995-REVISED JUNE 2014

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT	
17	Cumply waltage	Operating	1.65	3.6		
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		8.0		
VI	Input voltage		0	5.5	V	
\/	/ Output voltage	High or low state	0	V _{CC}	V	
Vo	Output voltage	3-state	0	5.5	V	
		V _{CC} = 1.65 V		-4		
	High level output ourrent	V _{CC} = 2.3 V		-8	A	
I _{OH}	High-level output current	V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
	Low lovel output ourrest	V _{CC} = 2.3 V		8	A	
I _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate			5	ns/V	
T _A	Operating free-air temperature		-40	125	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DGG	DGV	DL	LINIT
	THERMAL METRIC***	48 PINS	48 PINS	48 PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	67.1	80.2	70.6	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	19.9	32.7	36.8	
$R_{\theta JB}$			43.5	43.1	°C/W
ψ _{JT} Junction-to-top characterization parameter		1.8	4.7	13.9	
Ψ_{JB}	Junction-to-board characterization parameter	33.9	42.9	42.6	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Product Folder Links: SN74LVC16245A

7.5 Electrical Characteristics—DC Limit Changes

over recommended operating free-air temperature range (unless otherwise noted)

242		TEST SOUDITI		.,	-40°C	TO 85°C		–40°C	TO 125°C	3		
PARA	AMETER	TEST CONDITI	ONS	V _{CC}	MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	UNIT	
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} - 0.2			V _{CC} - 0.2				
		$I_{OH} = -4 \text{ mA}$		1.65 V	1.2			1.2				
V _{OH}		$I_{OH} = -8 \text{ mA}$		2.3 V	1.7			1.7			V	
0		10 1		2.7 V	2.2			2.2				
	I _{OH} = -12 mA		3 V	2.4			2.4					
		$I_{OH} = -24 \text{ mA}$		3 V	2.2			2.2				
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2			0.2		
		I _{OL} = 4 mA		1.65 V			0.45			0.45		
V_{OL}	I _{OL} = 8 mA			2.3 V			0.7			0.7	V	
		I _{OL} = 12 mA		2.7 V			0.4			0.4		
		$I_{OL} = 24 \text{ mA}$		3 V			0.55			0.55		
I	Control nputs	V _I = 0 to 5.5 V		3.6 V			±5			±5	μΑ	
I _{off}		V_I or $V_O = 5.5 \text{ V}$		0			±10			±20	μΑ	
I _{OZ} ⁽²⁾		V _O = 0 to 5.5 V		2.3 V to 3.6 V			±5			±5	μΑ	
		$V_I = V_{CC}$ or GND		0.01/			20			20	^	
I _{CC}		$3.6 \text{ V} \le \text{V}_1 \le 5.5 \text{ V}^{(3)}$ $I_0 = 0$		3.6 V			20			20	μΑ	
Δl _{CC}		One input at V _{CC} – 0.6, Other inputs at V _{CC} or GND		2.7 V to 3.6 V			500			500	μΑ	
	Control nputs	V _I = V _{CC} or GND		3.3 V		5					pF	
C _{io} A	A or B port	$V_O = V_{CC}$ or GND		3.3 V		7.5					pF	

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. For I/O ports, the parameter I_{OZ} includes the input leakage current. This applies in the disabled state only.

⁽²⁾ (3)

SCES062Q - DECEMBER 1995-REVISED JUNE 2014

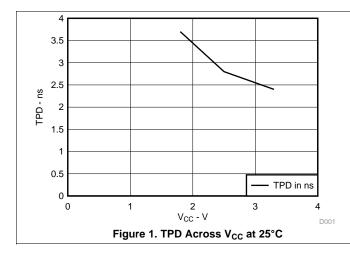
7.6 Switching Characteristics, -40°C TO 85°C

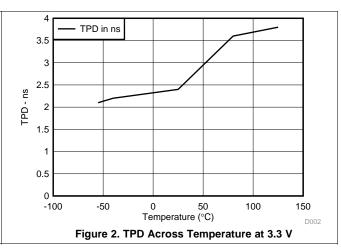
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

	, ,	-			_	40°C TO	85°C				
PARAMETER FROM (INPUT		TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	B or A	1.5	7.1	1	4.5	1	4.7	1	4.0	ns
t _{en}	ŌĒ	A or B	1.5	8.9	1	5.6	1.5	6.7	1.5	5.5	ns
t _{dis}	ŌĒ	A or B	1.5	11.9	1	6.8	1.5	7.1	1.5	6.6	ns
t _{sk(o)}										1	ns

7.7 Switching Characteristics, -40°C TO 125°C

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

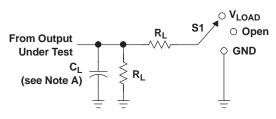

			−40°C TO 125°C								
PARAMETER FROM (INPUT)		TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	B or A	1.5	8.1	1	5.5	1	5.7	1	5.0	ns
t _{en}	ŌĒ	A or B	1.5	9.9	1	6.6	1.5	7.7	1.5	6.5	ns
t _{dis}	ŌĒ	A or B	1.5	13.9	1	7.8	1.5	8.1	1.5	7.6	ns
t _{sk(o)}										1.5	ns


7.8 Operating Characteristics

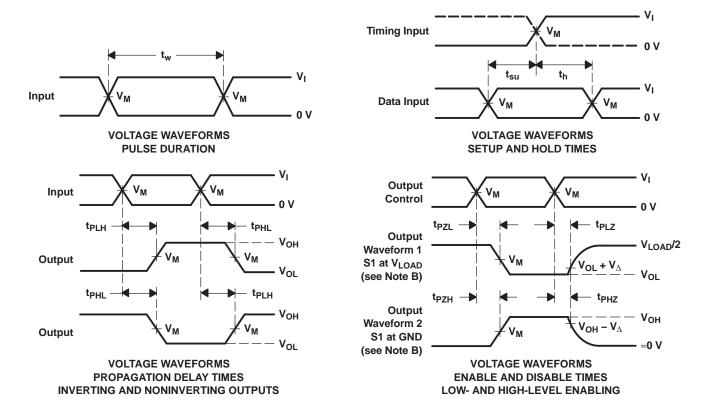
 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
_	Power dissipation capacitance	Outputs enabled	f = 10 MHz	34	37	38	pF	
Cpd	per transceiver	Outputs disabled	I = IU IVIMZ	3	3	4		

7.9 Typical Characteristics



Copyright © 1995–2014, Texas Instruments Incorporated


8 Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

.,	INPUTS		.,	v		_	v
V _{CC}	V_{I}	t _r /t _f	V _M	V _{LOAD}	CL	R _L	$oldsymbol{V}_\Delta$
1.8 V \pm 0.15 V	V _{CC}	≤ 2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V_{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

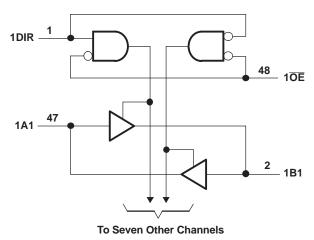
Submit Documentation Feedback

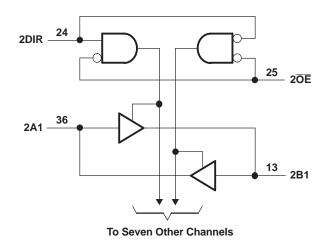
Copyright © 1995–2014, Texas Instruments Incorporated

SCES062Q - DECEMBER 1995-REVISED JUNE 2014

9 Detailed Description

9.1 Overview


The SN74LVC16245A device is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.


This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

9.2 Functional Block Diagram

Pin numbers shown are for the DGG, DGV, and DL packages.

9.3 Feature Description

- Wide operating voltage range from 1.65 V to 3.6 V
- Allows down voltage translation
- · Inputs accept voltages to 5.5 V
- I_{off} feature allows voltages on the inputs and outputs when V_{CC} is 0 V

9.4 Device Functional Modes

Table 3. Function Table

INP	UTS	OPERATION					
OE	DIR	OPERATION					
L	L	B data to A bus					
L	Н	A data to B bus					
Н	Χ	Isolation					

Copyright © 1995–2014, Texas Instruments Incorporated

10 Application and Implementation

10.1 Application Information

The SN74LVC16245A device is a 16-bit bidirectional transceiver. This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. The device has 5.5 V tolerant inputs at any valid V_{CC} . This allows it to be used in multi-power systems and for down translation as well.

10.2 Typical Application

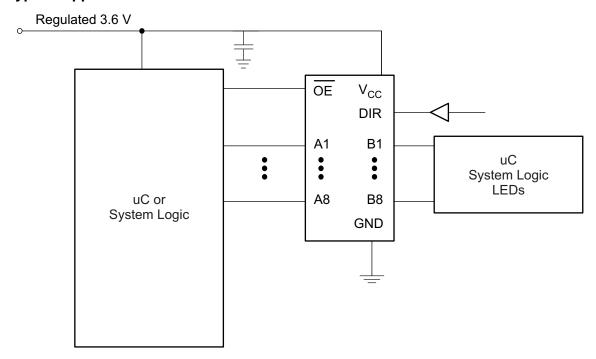


Figure 4. Typical Application Schematic

www.ti.com

SCES062Q - DECEMBER 1995 - REVISED JUNE 2014

Typical Application (continued)

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads; therefore, routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions table.
 - Specified high and low levels: See (V_{IH} and V_{IL}) in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed 25 mA per output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

10.2.3 Application Curves

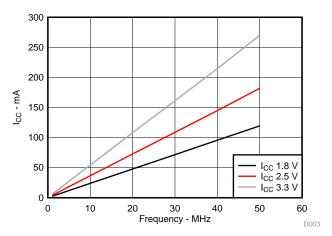


Figure 5. I_{CC} vs Frequency

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended; if there are multiple V_{CC} pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and a 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

Copyright © 1995–2014, Texas Instruments Incorporated

12 Layout

12.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 6 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the IOs, so they cannot float when disabled.

12.2 Layout Example

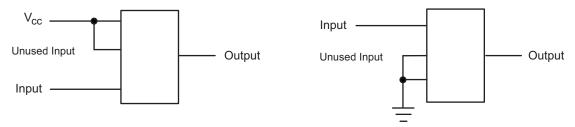


Figure 6. Layout Diagram

13 Device and Documentation Support

13.1 Trademarks

Widebus is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

20-Jan-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(-)		, and the same of			(=)	(6)	(=)		(" -)	
74LVC16245ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC16245A	Samples
74LVC16245ADGVRE4	ACTIVE	TVSOP	DGV	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LD245A	Samples
SN74LVC16245ADGGR	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC16245A	Samples
SN74LVC16245ADGVR	ACTIVE	TVSOP	DGV	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LD245A	Samples
SN74LVC16245ADL	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC16245A	Samples
SN74LVC16245ADLR	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC16245A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

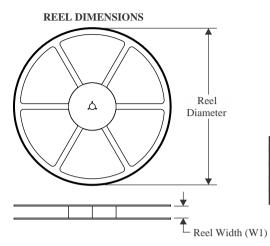
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

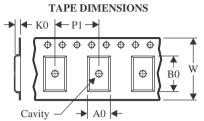
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

20-Jan-2021

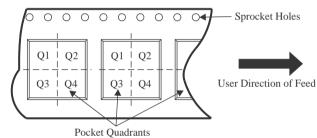
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



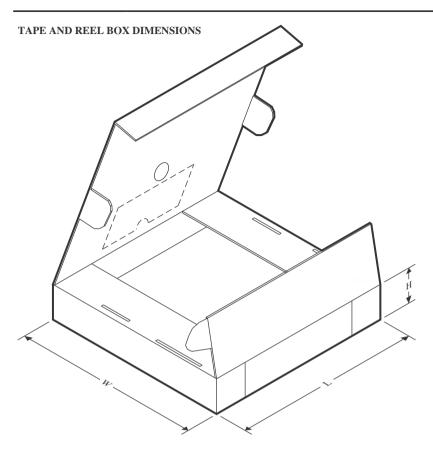
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

_	<u> </u>
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

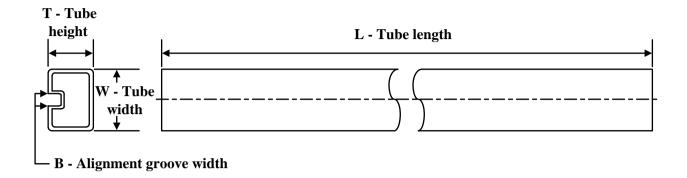

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC16245ADGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVC16245ADGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74LVC16245ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

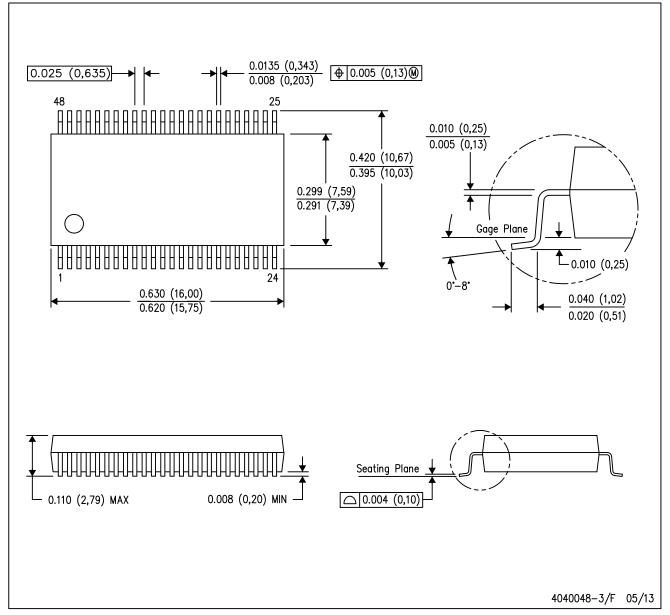
*All dimensions are nominal


Device	Package Type	Package Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74LVC16245ADGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0	
SN74LVC16245ADGVR	TVSOP	DGV	48	2000	356.0	356.0	35.0	
SN74LVC16245ADLR	SSOP	DL	48	1000	367.0	367.0	55.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TUBE


*All dimensions are nominal

Device Package Name		Package Type Pins		SPQ	L (mm)	W (mm)	T (µm)	B (mm)	
	SN74LVC16245ADL	DL	SSOP	48	25	473.7	14.24	5110	7.87

MECHANICAL DATA

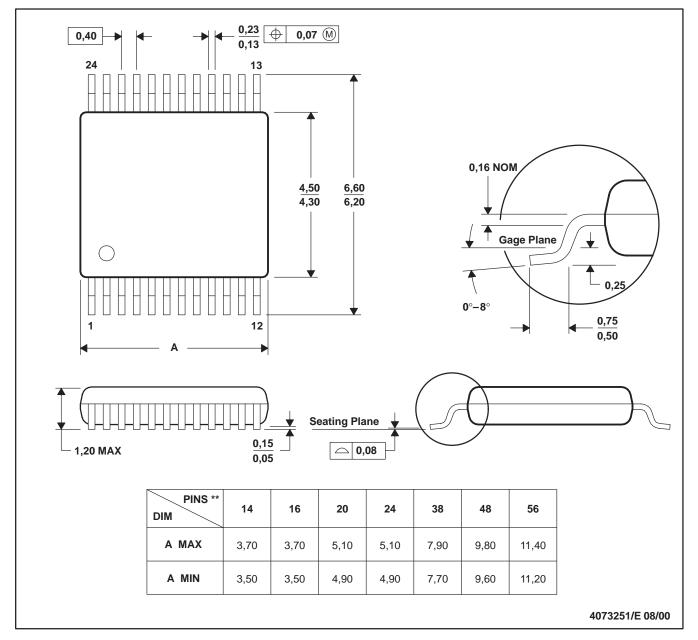
DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.



MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

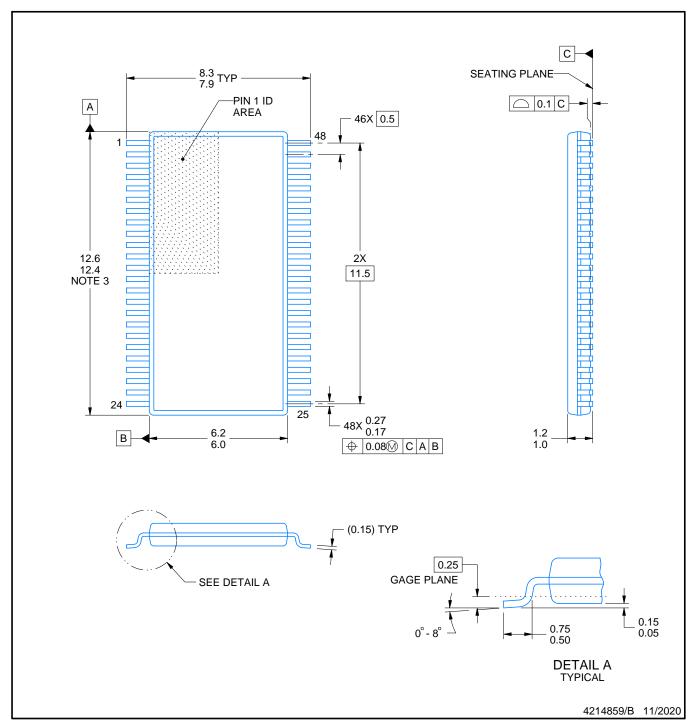
24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.


D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

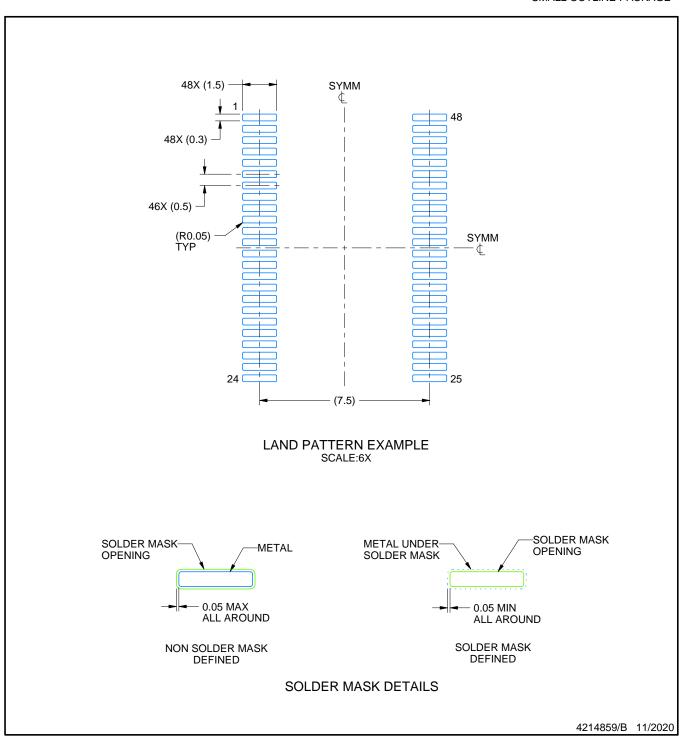
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

DGG0048A


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

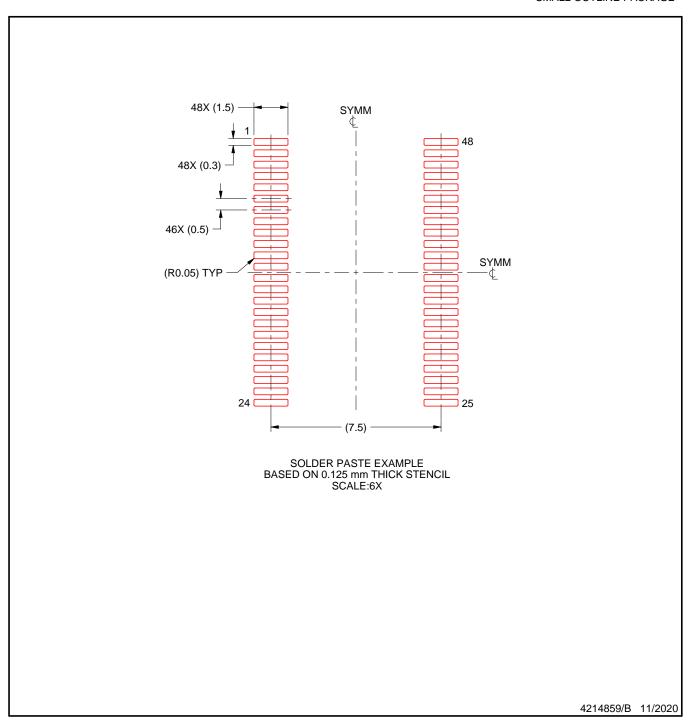
 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



EXAMPLE STENCIL DESIGN

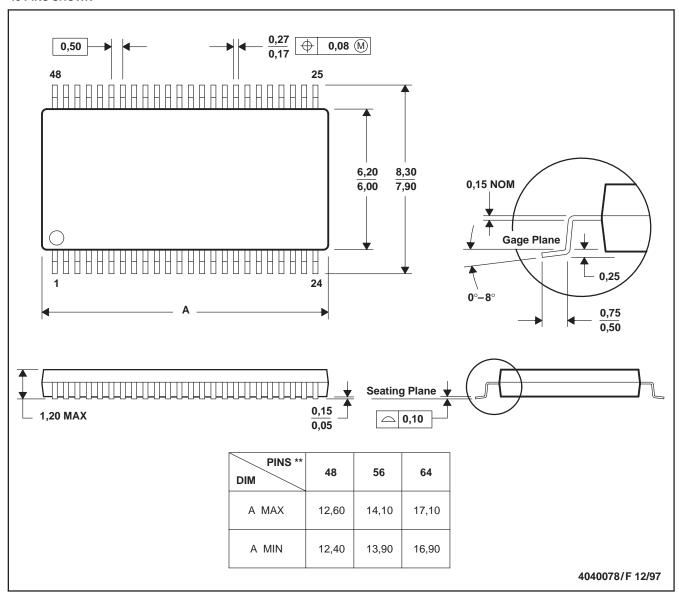
DGG0048A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.



MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com