

CD4015BEE4 Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number CD4015BEE4-DG

Manufacturer Texas Instruments

Manufacturer Product Number CD4015BEE4

Description CMOS DUAL 4-STAGE STATIC SHIFT R

Detailed Description Shift Shift Register 2 Element 4 Bit 16-PDIP

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

8542.39.0001

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
CD4015BEE4	Texas Instruments
Series:	Product Status:
4000B	Active
Logic Type:	Output Type:
Shift Register	Non-Inverted
Number of Elements:	Number of Bits per Element:
2	4
Function:	Voltage - Supply:
Serial to Parallel	3V ~ 18V
Operating Temperature:	Mounting Type:
-55°C ~ 125°C (TA)	Through Hole
Package / Case:	Supplier Device Package:
16-DIP (0.300", 7.62mm)	16-PDIP

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	Not Applicable
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Data sheet acquired from Harris Semiconductor SCHS025D – Revised October 2003

CMOS Dual 4-Stage Static Shift Register

With Serial Input/Parallel Output

High-Voltage Types (20-Volt Rating)

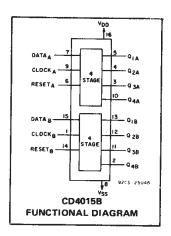
■ CD4015B consists of two identical, independent, 4-stage serial-input/paralleloutput registers. Each register has independent CLOCK and RESET inputs as well as a single serial DATA input. "Q" outputs are available from each of the four stages on both registers. All register stages are D-type, master-slave flip-flops. The logic level present at the DATA input is transferred into the first register stage and shifted over one stage at each positive-going clock transition. Resetting of all stages is accomplished by a high level on the reset line, Register expansion to 8 stages using one CD4015B package, or to more than 8 stages using additional CD4015B's is possible.

The CD4015B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic package (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

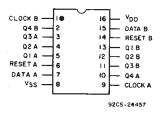
CD4015B Types

Features:

- Fully static operation
- 8 master-slave flip-flops plus input and output buffering
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package-temperature range;
 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =


2 V at V_{DD} = 10 V

2.5 V at V_{DD} = 15 V


Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Serial-input/parallel-output data queueing
- Serial to parallel data conversion
- General-purpose register

TERMINAL DIAGRAM

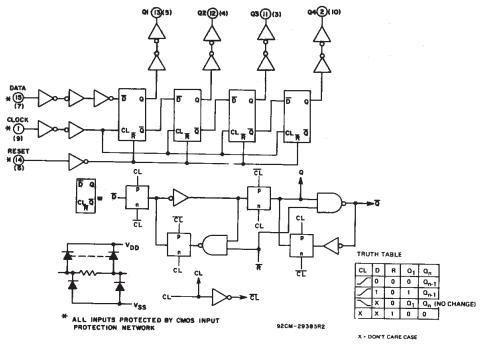


Fig. 1 - Logic diagram (1 register).

CD4015B Types

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)0.5V to +20V	
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to V _{DD} +0.5V	
DC INPUT CURRENT, ANY ONE INPUT	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW	
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	
OPERATING-TEMPERATURE RANGE (TA)55°C to +125°C	
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C	٠
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max +2659C	

	14	**	_	-					_					_	=	,	_	_		_	_	-	.,	_	_	n	_	_	_	_		_	_	_	_	_	_	_	_
1	13	M		E.	"		'		•	E	4	ij	'n	•	Ľ			Ą	"	z	?	٠,		1	t	Н	#	1	Ħ	Ħ	#	ŧ	Ħ	Ħ	#	Ħ	Ħ	Ħ	#1
l_	H	t	Н	t	t	Н	H	1	t	Н	4	t	t	Н	Н	Н	Н	+	1	t	Н	н	H	+	٠	Н	+	+	Н	H	t	t	Н	H	+	Н	H	н	н
12	П	Ŧ	Ц	4	Ţ	П	Ц	Į	Г	П	4	1	Г	П	9	Ĥ		7	Į	Г	П	Д	П	1	Į	П	4	Į	Г	Ц	Į	Ι.	П	Д	I	п	П	п	\mathbf{T}
Ē	H	+	Н	H	٠	Н	Н	t	t	Н	4	t	t	Н	Н	Н	Н	+	+	t	Н	Н	Н	t	t	н	+	+	Н	H	+	٠	Н	Н	+	н	н	н	н
14	п	I	П	1	ľ		П	I	Т	Ц	7	1	r	П		о	Ō	1	I	I	U	Ū		Ι	I	п	I	Ι	Е	п	1	Ι	О	П	1	п		п	\blacksquare
17	н	+	Н	4	₽	н	н	+	┿	Н	4	+	₽	Н	Н	Н	Н	4	+	₽	Н	Н	Н	Ŧ	Ł	Н	4	Ŧ	H	H	+	F	Н	H	7	н	4	н	44
2 30	Ħ	İ	П	t	t	Ħ	п	İ	Ť.	ž.	÷	É	3	-	d	ä	×			4		3	7	÷	٠,	Æ	.,	ú	:	7	á	÷	H	#	t	Ħ	Ħ	Ħ	ш
12	H	Ŧ	Н	4	F	Н	Н	Ŧ	Ŧ,	_	٠.	٤	- '		1	٩	٧	٠.	mq	•	:	-1	•	• * *	~*	*		4	S		- 61	•	۳.	4	7	П	I	Ŧ	47
15	н	+	Н	+	٠	Н	Н	+	٠	Н	t	ŧ	۰	۲	Н	н	Н	1	±	۰	н	н	н	٠	٠	Н	+	٠	۲	Н	٠	٠	н	Н	+	н	н	н	н
NJ 25	п	Ι	П	1	Ι	п	П	Ι	Ι		1	1	Г			0	7	3	1	Ι				Ι	Ι		1	Ι	С	П	1	I		Ц	1	11	ш	Ħ	ш
1E ~	н	+	Н	4	┿	Н	H	+	ŀ	Н	+	Ŧ	t	ч	н	Н	Н	4	+	₽	Н	Н	Н	+	₽	Н	4	+	Н	Н	+	H	Н	Н	+	н	H	н	44
15	Н	1	Н	1	t	Ħ	1	1	Ť.	Ħ	1	t	r	П		П	П	1	1	t	П	П	Ħ	1	t	Н	1	t	r	H	Ť	r	Ľ	Ħ	*	Ħ	*	*1	ш
LOW (SINK) CU	П	Ŧ	П	7	Ŧ	н	4	Ŧ	Ŧ	Н	J	4	Ŧ	П	Я	Я	П	7	Ŧ	Ŧ	Н	П	4	Ŧ	Ŧ	н	7	Ŧ	Г	П	Ŧ	F	П	д	Ŧ	П	П	П	77
- 20	н	+	Н	+	٠	Н	+	t	t.	н	4	t	۰	Н	Н	Н	Н	+	+	۰	Н	Н	Ħ	t	٠	Н	+	+	Н	H	t	۲	н	H	+	н	н	н	н
1.	п	T.	П	1	L	П	ユ	I	T.		Į	Į	Ţ	П	П	9	П	ı	I	I.	П	П	ӵ	Ι	Ι	П	I	Ι	Е	п	Ι	Е		П	I	П	П	п	\blacksquare
125	н	+	Н	+	н	н	4	r	7	н	+	+	٠	Н	Н	Н	Н	+	+	٠	Н	Н	4	+	٠	н	+	+	Н	Н	+	₽	н	Н	+	н	H	н	44
15 15	Ħ	1	П	1	t	ш	z	1	t	o	1	İ	t	N	ò	v	⇉	1	1	İ	Ľ	◨	1	1	t		1	Ι	t	Ħ	Ť	t	H	Ħ	Ť	Ħ	Ħ	Ħ	ш
l 🗷 🗀	н	+	Н	+	Н	и	4	+	₽.	н	4	٠	٠	H	H	н	Н	4	+	₽	Н	Н	H	+	Į.	н	4	4-	Į.	н	+	4.	Н	Ц	4	н	Ц.	н	41
ō	н	t	Н	+	И	Н	t	ż	۲	О	Ŧ	t	۲	Н	Н	Н	H	1	t	t	H	H	t	t	r	Н	+	t	H	H	t	H	Н	H	+	Н	H	н	н
	п	Į,	П	-	П	и	4	I	L	П	Į	I	Į.	Ц	П	П	П	4	Ţ	Į.	П	П	Ц	I	Ι	П	Į	I	Ц	П	I	Г	П	П	I	П	п	П	ш
- 10	н	٠	н	4.	и	н	+	٠	٠	н	+	٠	٠	Н	н	н	н	+	+	٠	н	Н	+	٠	٠	Н	+	+	н	н	+	н	н	н	+	н	H	н	н
15	п	1	ī,	z	п	п	#	1	t		1	1	t		П	ē		1	1	Ì.	п	1	Ħ	1	İ	Ц	1	1	E	Ħ	İ	Ľ	Ц	Ħ	1	Ħ		Ħ	ш
OUTPUT O	H	ы	ы	4	н	н	+	+	₽	Н	+	+	₽	Н	н	н	Н	-}	+	╄	н	Н	н	+	ŧ.	Н	4	+	н	Н	4	μ	Н	н	4	н	4	н	41
là ₅	Ц	Ď	d	1	Ħ	F.	ĸ.	v	t	Н	1	t	t	Н	Н	d	d	Ì	t	t	Н	Н	1	t	Ť	Н	+	t	Ľ	Н	t	t	Н	Н	1	Н	н	н	н
0 ,	П	7	Н	7	Д	G	ŭ	÷	F	Н	7	Ŧ	Ŧ	П	Я	Я	П	4	Ŧ	F	П	ч	Т	Ŧ	Į.	П	7	Ŧ	H	П	Ŧ	Į.	П	H	Ŧ	П	Ŧ	н	Ŧ
l	н	٠.	ы	٠	F	Н	÷	+	٠	н	+	٠	t	Н	Н	н	Н	÷	+	٠	Н	Н	H	┿	٠	Н	╅	+	Н	Н	+	٠	Н	Н	+	н	Н	н	н
i i		r	П	1	П	П	4	1	Τ	¤	1	1	t	П	Ħ	Ξ	٦	4	1	L	Ħ	П	I	I	L	Ц	1	T	D	Ц	1	Ľ		1	1	п		1	#
	-	-	Ц	1	ш	Ц		÷	_	ш	4	•	-	ш	ч	Ų	4	_	4	-	ш	_1	ц	Ψ,	-	Ц	1	1	ı.	Ц	1	ш	u	1	1	п	ш		-
	,							5								Ķ									5														
					-	DI	4/	LH	4	-1	0	•	SI	α	H	t	E	:	W	Ò	Ţ	A	G	Ė	(٧	ď	s	۱-	-1	1									

Fig. 2 — Typical output low (sink) current characteristics.

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC		V _{DD}	LIN	AIT\$	UNITS
		(V)	Min.	Max.	
Supply-Voltage Range (For T _f Temperature Range)	= Full Package-		3	18	v
Clock Pulse Width,	t _W CL	5 10 15	180 80 50		ns
Clock Rise and Fall Time,	t _r CL, t _f CL	5 10 15	-	15 6 2	μs
Clock Input Frequency,	fCL	5 10 15	DC	3 6 8.5	MHz
Data Setup Time,	^t s∪	5 10 15	70 40 30	- - 	ne ne
Reset Pulse Width,	t _W R	5 10 15	200 80 60	_ _ _	ns

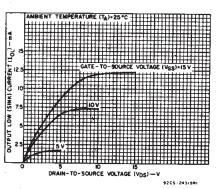
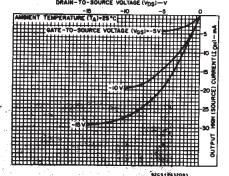



Fig. 3 – Minimum output low (sink) current characteristics.

g. 4 — Typical output high (source) current characteristics.

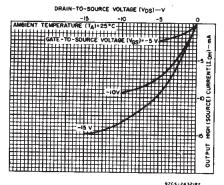


Fig. 5 — Minimum output high (source) current characteristics.

Fig. 6 — Typical transition time as a function of load capacitance.

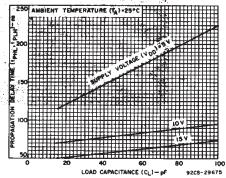
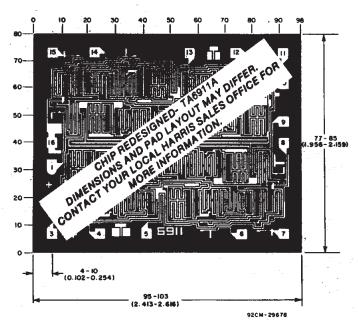



Fig. 7 — Typical propagation delay time as a function of load-capacitance,

CD4015B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	COND	OITION	ıs	LIM	ITS AT	INDICA	TED TE	MPERA	TURES	(°C)	UNITS
ISTIC	Vo (V)	VIN (V)	V _{DD} (V)	-55	-40	+85	+125	Min.	+25 Typ.	Max.	
Quiescent Device	-	0,5	5	5	5	150	150	_	0.04	5	
Current,		0,10	10	10	10	300	300		0.04	10	
IDD Max.		0,15	15	20	20	600	600	-	0.04	20	μА
	7 -	0,20	20	100	100	3000	3000		0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	1
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	mA
(Source) Current, IOH Min.	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	_	
TOH WITE	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	_	0,5	5		. 0	.05		-	0	0.05	
Low-Level, VOL Max.	_	0,10	10		0	.05		-	0	0.05	
AOF Max.	_	0,15	15		0	.05		-	0	0.05	v
Output Voltage:	_	0,5	5		4	.95		4.95	5	-	•
High-Level,		0,10	10		9	.95		9.95	10	-	
VOH Min.	_	0,15	15		14	.95		14.95	15	-	
Input Low	0.5, 4.5	_	5		1	.5		-	_	1.5	
Voltage,	1, 9		10			3		-		3	
VIL Max.	1.5,13.5	_	15			4		-		4	v
Input High	0.5, 4.5		5		3	3.5		3.5	_		v
Voltage,	1, 9		10			7		7	_		
VIH Min.	1.5,13.5		15			11		11	-	_	
Input Current IIN Max.	_	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ

Photograph of Chip Layout for CD4015B.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

CD4015B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{\rm A}$ = 25° C, Input $t_{\rm i}, t_{\rm f}$ = 20 ns,

 $C_L = 50 pF$, $R_L = 200 k\Omega$

CHARACTERISTIC	TEST CONDITIONS		LIMITO		
CHARACTERISTIC	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
CLOCKED OPERATION				<u> </u>	
Propagation Delay Time,	5	_	160	320	
T _{PHL} , T _{PLH}	10	l —	80	160	
	15	_	60	120	
	5		100	200	
Transition Time, tthi, ttlh	10	_	50	100	ns
	15	_	40	80	
Minimum Clock Pulse	5	_	90	180	
Width, twCL	10	_	40	80	
,	15	l —	25	50	
Clock Rise and Fall Time,	5		_	15	
t _r CL, t _f CL*	10	_		6	μs
	15	_	l –	2	
Minimum Data Setup Time,	5	_	35	70	
tSU	10		20	40	
	15		15	30	
	5		-	0	ns
Minimum Data Hold Time, t _H	10	_	_	0	
	15	_		0	
Maximum Clock Input	5	3	6	_	
Frequency, fcL	10	6	12	_	MHz
	15	8.5	17	_	
Input Capacitance, C _{IN}	Any Input	_	5	7.5	pF
RESET OPERATION					
Propagation Delay Time,	5		200	400	
TPHL, TPLH	10		100	200	
	15	_	80	160	
Minimum Reset Pulse Width,	5	_	100	200	ns
twR	10	_	40	80	
	15	,	30	60	

^{*}If more than one unit is cascaded t.CL should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

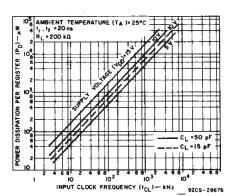


Fig. 8 — Typical power dissipation as a function of frequency.

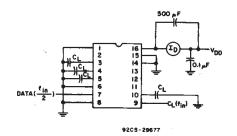


Fig. 9 - Power dissipation test circuit.

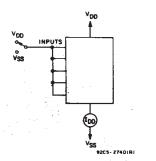


Fig. 10 — Quiescent device current test circuit.

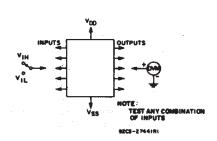


Fig. 11 - Input voltage test circuit.

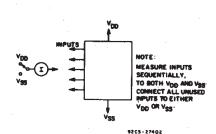


Fig. 12 - Input current test circuit.

PACKAGE OPTION ADDENDUM

www.ti.com 30-Jul-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD4015BE	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4015BE	Samples
CD4015BEE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4015BE	Samples
CD4015BF	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD4015BF	Samples
CD4015BF3A	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD4015BF3A	Samples
CD4015BM	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-55 to 125	CD4015BM	
CD4015BM96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4015BM	Samples
CD4015BMT	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-55 to 125	CD4015BM	
CD4015BPW	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-55 to 125	CM015B	
CD4015BPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM015B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

CD4015BEE4 Texas Instruments CMOS DUAL 4-STAGE STATIC SHIFT R

PACKAGE OPTION ADDENDUM

www.ti.com 30-Jul-2024

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

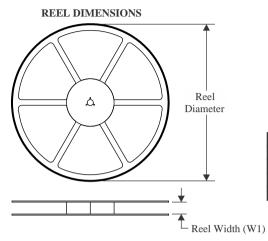
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

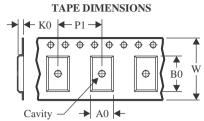
OTHER QUALIFIED VERSIONS OF CD4015B, CD4015B-MIL:

Catalog: CD4015B

Military: CD4015B-MIL

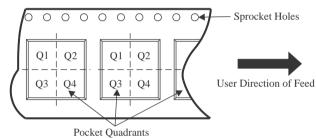
NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications



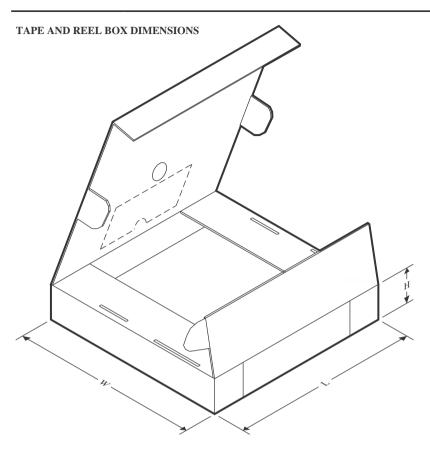
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

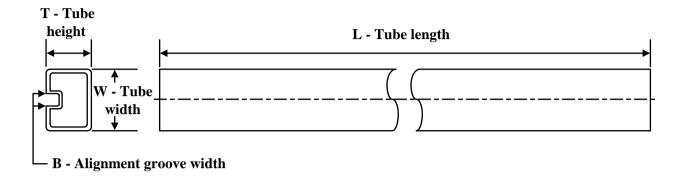

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4015BM96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4015BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024

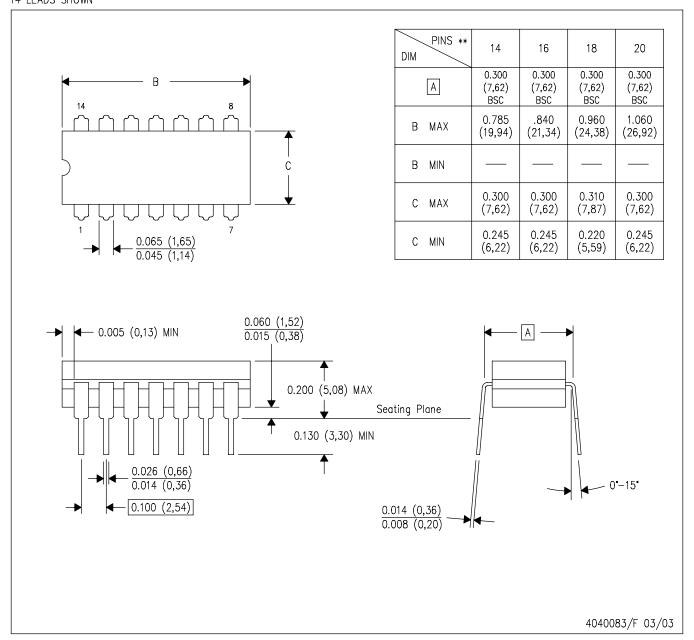
*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4015BM96	SOIC	D	16	2500	353.0	353.0	32.0
CD4015BPWR	TSSOP	PW	16	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024

TUBE

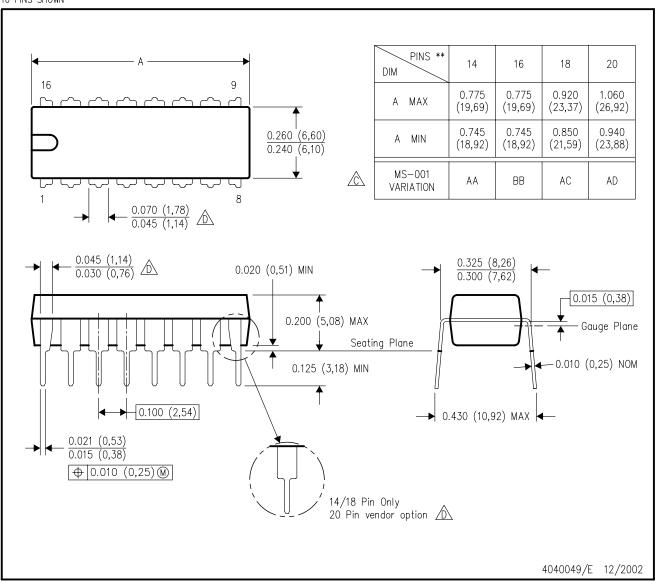

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD4015BE	N	PDIP	16	25	506	13.97	11230	4.32
CD4015BE	N	PDIP	16	25	506	13.97	11230	4.32
CD4015BEE4	N	PDIP	16	25	506	13.97	11230	4.32
CD4015BEE4	N	PDIP	16	25	506	13.97	11230	4.32

J (R-GDIP-T**)

CERAMIC DUAL IN-LINE PACKAGE

14 LEADS SHOWN

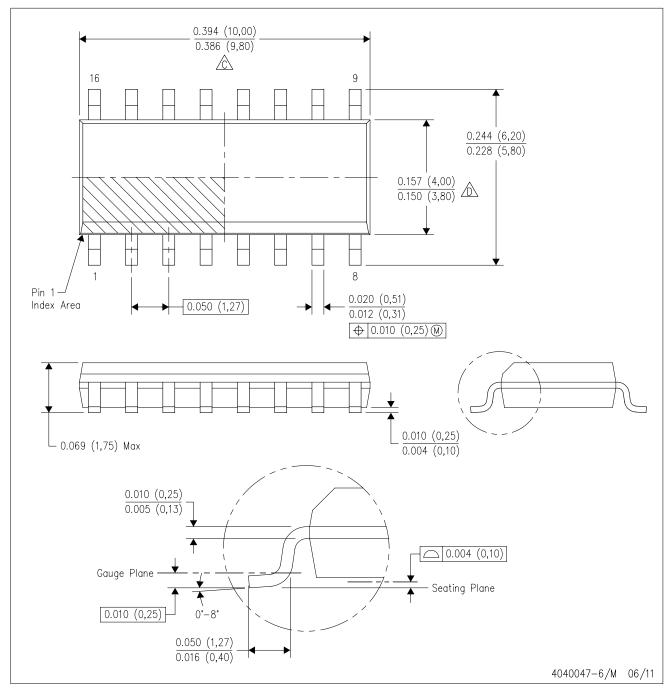

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

MECHANICAL DATA

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

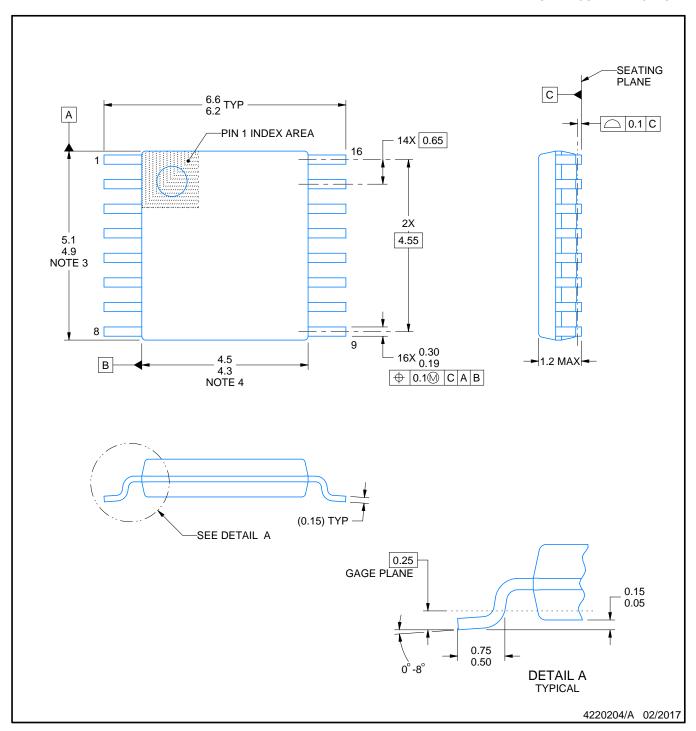
16 PINS SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

MECHANICAL DATA

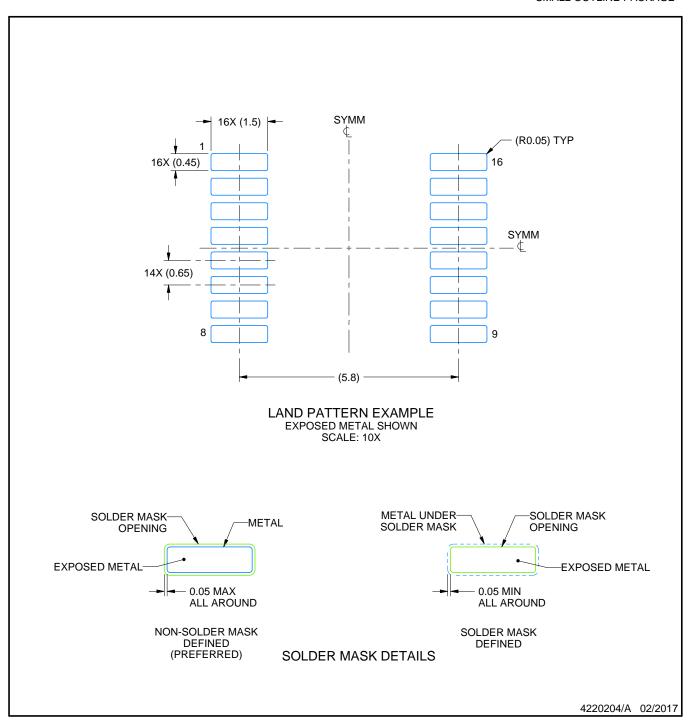
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

TSSOP - 1.2 mm max height

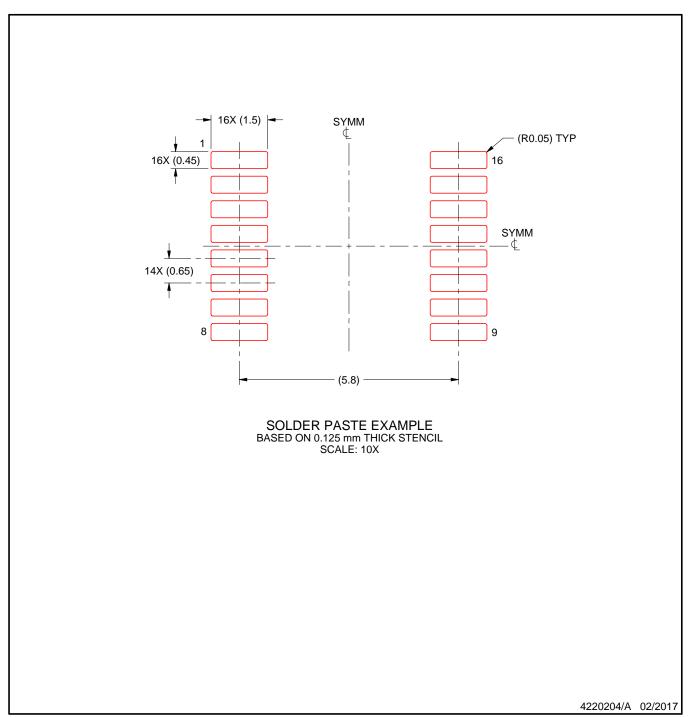
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com