

SN74ALS666DWG4 Datasheet

SN74.	DiGi Electronics Part Number						
Texas	Manufacturer						
SN74.	Manufacturer Product Number						
IC D-1	Description						
D-Typ	Detailed Description						

ALS666DWG4-DG

s Instruments

ALS666DWG4

TYPE TRANSP SGL 8:8 24SOIC

pe Transparent Latch 1 Channel 8:8 IC Tri-Stat e 24-SOIC

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
SN74ALS666DWG4	Texas Instruments
Series:	Product Status:
74ALS	Discontinued at Digi-Key
Logic Type:	Circuit:
D-Type Transparent Latch	8:8
Output Type:	Voltage - Supply:
Tri-State	4.5V ~ 5.5V
Independent Circuits:	Delay Time - Propagation:
1	6ns
Current - Output High, Low:	Operating Temperature:
400μA, 8mA	0°C ~ 70°C
Mounting Type:	Package / Case:
5 71	-
Surface Mount	24-SOIC (0.295", 7.50mm Width)
Surface Mount	24-SOIC (0.295", 7.50mm Width)

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

SN74ALS666, SN74ALS667 8-BIT D-TYPE TRANSPARENT READ-BACK LATCHES WITH 3-STATE OUTPUTS

SDAS227A – JUNE 1984 – REVISED JANUARY 1995

- 3-State I/O-Type Read-Back Inputs
- Bus-Structured Pinout
- Choice of True or Inverting Logic
 SN74ALS666... True Outputs
 SN74ALS667... Inverted Outputs
- Preset and Clear Inputs
- Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic (NT) 300-mil DIPs

description

These 8-bit D-type transparent latches are designed specifically for storing the contents of the input data bus, plus reading back the stored data onto the input data bus. In addition, they provide a 3-state buffer-type output and are easily utilized in bus-structured applications.

While the latch enable (LE) is high, the Q outputs of the SN74ALS666 follow the data (D) inputs. The \overline{Q} outputs of the SN74ALS667 provide the inverse of the data applied to its D inputs. The Q or \overline{Q} output of both devices is in the high-impedance state if either output-enable ($\overline{OE1}$ or $\overline{OE2}$) input is at a high logic level.

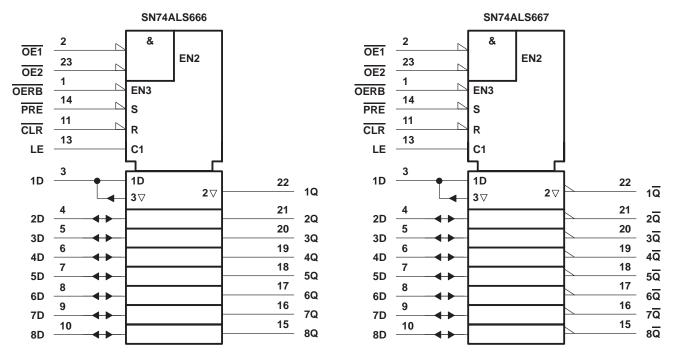
Read back is provided through the read-back control (OERB) input. When OERB is taken low, the data present at the output of the data latches passes back onto the input data bus. When OERB is taken high, the output of the data latches is isolated from the D inputs. OERB does not affect the internal operation of the latches; however, caution should be exercised to avoid a bus conflict.

The SN74ALS666 and SN74ALS667 are characterized for operation from 0°C to 70°C.

OERB 1 24 V _{CC} OE1 2 23 OE2 1D 3 22 1Q 2D 4 21 2Q 3D 5 20 3Q 4D 6 19 4Q 5D 7 18 5Q	SN74ALS666 DW OR NT PACKAGE (TOP VIEW)									
6D 8 17 6Q 7D 9 16 7Q 8D 10 15 8Q CLR 11 14 PRE GND 12 13 LE	OE1 1D 2D 3D 4D 5D 6D 7D CLR	3 4 5 6 7 8 9 10 11	23 22 21 20 19 18 17 16 15 14	0E2 1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q						

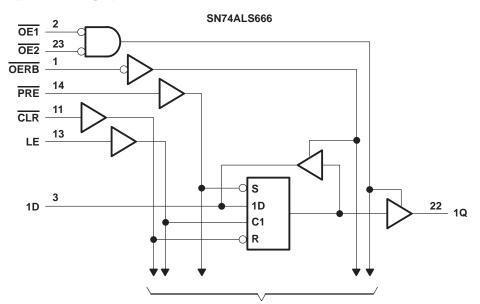
SN74ALS667 . . . DW OR NT PACKAGE (TOP VIEW)

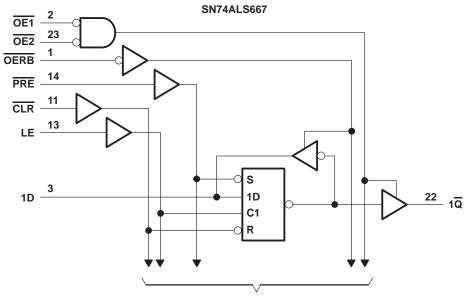
OERB [OE1 [1D [2D [3D [4D [5D [7D [1 2 3 4 5 6 7 8 9	U 22 23 22 20 20 19 18 18 17	3 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 7 7 1 2 7 7 1 1 2 7 7 1 1 1 2 7 7 1 1 1 2 7 7 1 1 1 1	V _{CC} 2 122 2010 2010 2010 2010 2010 2010 201
-				_
7D [9	16	зþ	
8D [10	15	50	8 <mark>Q</mark>
CLR [11	14	₄D	PRE
GND [12	13	3	LE


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74ALS666DWG4 Texas Instruments IC D-TYPE TRANSP SGL 8:8 24SOIC SN74ALS666, SN74ALS667 **8-BIT D-TYPE TRANSPARENT READ-BACK LATCHES** WITH 3-STATE OUTPUTS

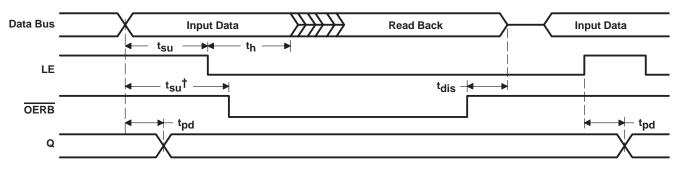
SDAS227A - JUNE 1984 - REVISED JANUARY 1995


logic symbols[†]


[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagrams (positive logic)

To Seven Other Channels


To Seven Other Channels

SN74ALS666DWG4 Texas Instruments IC D-TYPE TRANSP SGL 8:8 24SOIC SN74ALS666, SN74ALS667 **8-BIT D-TYPE TRANSPARENT READ-BACK LATCHES** WITH 3-STATE OUTPUTS

SDAS227A - JUNE 1984 - REVISED JANUARY 1995

timing diagram

$\overline{\text{CLR}}$ = H. $\overline{\text{PRE}}$ = H. $\overline{\text{OE1}}$ = L. $\overline{\text{OE2}}$ = L.

[†] This setup time ensures the read-back circuit does not create a conflict on the input data bus.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V _{CC}	
Input voltage, V _I (all inputs except D inputs)	
Voltage applied to D inputs and to disabled 3-state outputs	5.5 V
Operating free-air temperature range, T _A : SN74ALS666, SN74ALS667	0°C to 70°C
Storage temperature range	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			-	SN74ALS666 SN74ALS667		UNIT
			MIN	NOM	MAX	
VCC	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
lau	Leve High level output ourrent	Q			-2.6	mA
ЮН	High-level output current	D			-0.4	mA
lai		Q			24	A
IOL	Low-level output current	D			8	mA
		LE high	10			
tw	Pulse duration	CLR low	10			ns
		PRE low	10			
	Catura tima	Data before LE \downarrow	10			
t _{su}	Setup time	Data before OERB↓				ns
t _h	Hold time, data after LE \downarrow		5			ns
Тд	Operating free-air temperature		0		70	°C

SDAS227A - JUNE 1984 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		PARAMETER TEST CONDITIONS				66 67	UNIT
		MIN	TYP [†]	MAX			
VIK		V _{CC} = 4.5 V,	lj = -18 mA			-1.2	V
	All outputs	$V_{CC} = 4.5 V \text{ to } 5.5 V,$	I _{OH} = - 0.4 mA	V _{CC} -2	!		V
VOH	Q or Q	$V_{CC} = 4.5 V,$	I _{OH} = - 2.6 mA	2.4	3.2		V
	Disputa	V _{CC} = 4.5 V	I _{OL} = 4 mA		0.25	0.4	
D inputs	VCC = 4.5 V	I _{OL} = 8 mA		0.35	0.5	V	
VOL			I _{OL} = 12 mA		0.25	0.4	v
Q or Q	$V_{\rm CC} = 4.5 \text{V}$	I _{OL} = 24 mA		0.35	0.5		
IOZH	Q or Q	V _{CC} = 5.5 V,	V _O = 2.7 V			20	μΑ
IOZL	Q or Q	V _{CC} = 5.5 V,	$V_{O} = 0.4 V$			-20	μΑ
1.	D inputs	V _{CC} = 5.5 V	V _I = 5.5 V			0.1	mA
1	All others	VCC = 5.5 V	V _I = 7 V			0.1	mA
l	D inputs‡	V _{CC} = 5.5 V,	VI = 2.7 V			20	μA
ΙΗ	All others	VCC = 5.5 V,	v = 2.7 v				μA
L.	D inputs‡		VI = 0.4 V			-0.1	mA
۱L	All others	V _{CC} = 5.5 V,	v] = 0.4 v			-0.1	ΠA
۱ ₀ §		V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	mA
			Q outputs high		25	50	
	SN74ALS666	<u>V_{CC} =</u> 5.5 V, OERB high	Q outputs low		40	73	
laa		OLIVE High	Q outputs disabled		30	55	m ^
ICC			Q outputs high		25	50	mA
	SN74ALS667	<u>V_{CC} =</u> 5.5 V, OERB high	Q outputs low		45	79	
		g	Q outputs disabled		30	60	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] For I/O ports (Q_A through Q_H), the parameters I_{IH} and I_{IL} include the off-state output current.

§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SN74ALS666DWG4 Texas Instruments IC D-TYPE TRANSP SGL 8:8 24SOIC SN74ALS666, SN74ALS667 8-BIT D-TYPE TRANSPARENT READ-BACK LATCHES WITH 3-STATE OUTPUTS SDAS227A - JUNE 1984 - REVISED JANUARY 1995

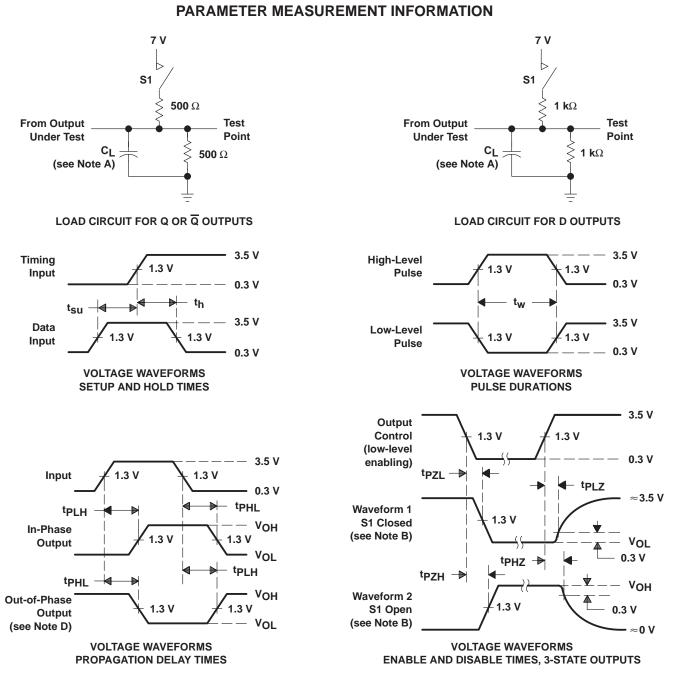
switching characteristics (see Figure 1)

PARAMETER	FROM	TO	V _{CC} = 4.5 C _L = 50 pF T _A = MIN t	UNIT		
	(INPUT)	(OUTPUT)	SN74A	LS666	-	
			MIN	MAX		
^t PLH	D	0	3	14	ns	
^t PHL		Q	4	18	115	
^t PLH	LE	0	6	21	ns	
^t PHL		Q	8	27	115	
		Q	9	29	ns	
^t PHL	CLR	CER	D	11	32	115
^t PLH	PRE	Q	7	22	ns	
^t PHL	PRE	D	9	28	115	
. +	OERB	D	4	21	20	
t _{en} ‡	OE1, OE2	Q	4	21	ns	
t _{dis} §	OERB	D	1	14	200	
^t dis ³	OE1, OE2	Q	1	14	ns	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $t_{en} = t_{PZH} \text{ or } t_{PZL}$ $t_{dis} = t_{PHZ} \text{ or } t_{PLZ}$

switching characteristics (see Figure 1)


PARAMETER	FROM	TO	V _{CC} = 4.5 C _L = 50 pF T _A = MIN t	UNIT	
	(INPUT)	(OUTPUT)	SN74A		
			MIN	MAX	
^t PLH	D	ā	6	20	ns
^t PHL	D	Q	4	15	115
^t PLH	LE	ā	9	28	ns
^t PHL	LE	Q	7	22	115
t =		Q	7	24	-
^t PHL	CLR	D	8	26	ns
^t PLH	005	Q	8	25	
^t PHL	PRE	D	9	28	ns
. +	OERB	D	4	21	
t _{en} ‡	OE1, OE2	Q	4	21	ns
4 8	OERB	D	1	14	
t _{dis} §	OE1, OE2	Q	1	14	ns

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $t_{en} = t_{PZH} \text{ or } t_{PZL}$ $t_{dis} = t_{PHZ} \text{ or } t_{PLZ}$

SDAS227A - JUNE 1984 - REVISED JANUARY 1995

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses have the following characteristics: PRR \leq 1 MHz, t_{f} = t_{f} = 2 ns, duty cycle = 50%.
 - D. When measuring propagation delay times of 3-state outputs, switch S1 is open.

Figure 1. Load Circuits and Voltage Waveforms

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ALS666DW	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS666	Samples
SN74ALS667DW	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS667	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures. "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

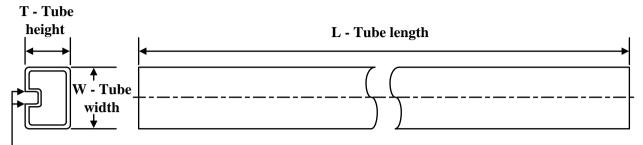
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

14-Oct-2022



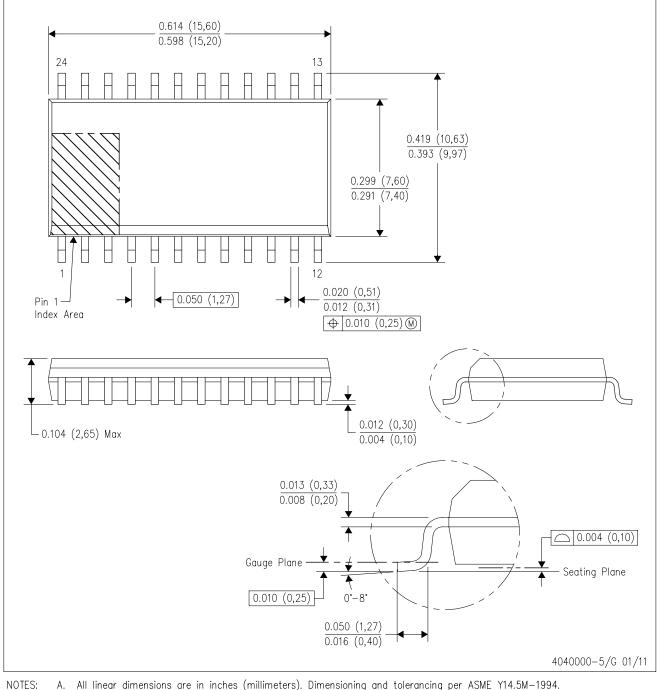
PACKAGE MATERIALS INFORMATION

9-Aug-2022

www.ti.com

TUBE

- B - Alignment groove width


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74ALS666DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74ALS667DW	DW	SOIC	24	25	506.98	12.7	4826	6.6

MECHANICAL DATA

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.