

SNJ54ABT240FK Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	SNJ54ABT240FK-DG
Manufacturer	Texas Instruments
Manufacturer Product Number	SNJ54ABT240FK
Description	54ABT240 OCTAL BUFFERS/DRIVERS W
Detailed Description	Element Bit per Element Output

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Environmental & Export classification

ECCN:

EAR99

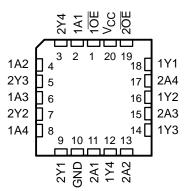
HTSUS:

8542.39.0001

SN54ABT240, SN74ABT240A OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS098I – JANUARY 1991 – REVISED JUNE 2002

- Typical V_{OLP} (Output Ground Bounce)
 <1 V at V_{CC} = 5 V, T_A = 25°C
- High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL})
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
 200-V Machine Model (A115-A)

description


These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Together with the SN54ABT241, SN74ABT241A, SN54ABT244, and SN74ABT244A, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (\overline{OE}) inputs, and complementary OE and \overline{OE} inputs.

The SN54ABT240 and SN74ABT240A are organized as two 4-bit buffers/line drivers with separate \overline{OE} inputs. When \overline{OE} is low, the devices pass inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

SN54ABT240 J OR W PACKAGE	
SN74ABT240A DB, DW, N, NS, OR PW PACKAGE	
(TOP VIEW)	

	•	,	
1OE 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND	2 3 4 5 6 7	18 17 16 15 14 13	V _{CC} 2OE 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1

SN54ABT240 . . . FK PACKAGE (TOP VIEW)

ТА	PACKAG	3E†	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	PDIP – N	Tube	SN74ABT240AN	SN74ABT240AN	
–40°C to 85°C	SOIC - DW	Tube	SN74ABT240ADW	ABT240A	
	3010 - 000	Tape and reel	SN74ABT240ADWR	ABT240A	
	SOP – NS	Tape and reel	SN74ABT240ANSR	ABT240A	
	SSOP – DB	Tape and reel	SN74ABT240ADBR	AB240A	
	TSSOP – PW	Tape and reel	SN74ABT240APWR	AB240A	
	CDIP – J	Tube	SNJ54ABT240J	SNJ54ABT240J	
–55°C to 125°C	CFP – W Tube		SNJ54ABT240W	SNJ54ABT240W	
	LCCC – FK	Tube	SNJ54ABT240FK	SNJ54ABT240FK	

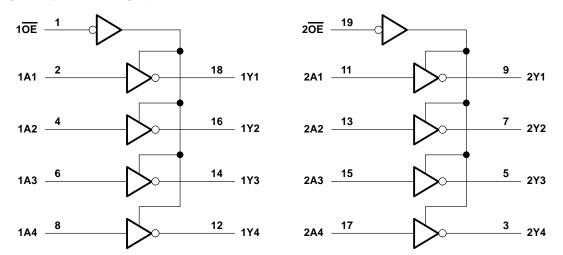
ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-3853, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.


description (continued)

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE (each buffer)										
INP	JTS	OUTPUT								
OE	Α	Y								
L	Н	L								
L	L	н								
н	Х	Z								

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC}
Current into any output in the low state, I _O : SN54ABT240
SN74ABT240A
Input clamp current, I _{IK} (V _I < 0) –18 mA
Output clamp current, I_{OK} ($V_O < 0$)
Package thermal impedance, θ_{JA} (see Note 2): DB package
DW package
N package
NS package
PW package
Storage temperature range, T _{stg}

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			SN54A	BT240	SN74AB	T240A	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage		0	VCC	0	VCC	V
ЮН	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER TEST COND		ITIONS	Т	A = 25°C	;	SN54A	BT240	SN74AB	UNIT			
PARAI	MEIER	TEST COND	ITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	lı = –18 mA			-1.2		-1.2		-1.2	V	
		V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5			2.5		2.5			
Mari		V _{CC} = 5 V,	I _{OH} = -3 mA	3			3		3		V	
VOH V _{CC} = 4.5 V		I _{OH} = -24 mA	2			2				V		
		I _{OH} = -32 mA	2*					2				
V_{OL} $V_{CC} = 4.5 V$		I _{OL} = 48 mA			0.55		0.55			V		
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}					100						mV	
Ц		V _{CC} = 5.5 V,	$V_I = V_{CC} \text{ or } GND$			±1		±1		±1	±1 μΑ	
IOZH		V _{CC} = 5.5 V,	V _O = 2.7 V			10		10		10	10 μA	
IOZL		V _{CC} = 5.5 V,	V _O = 0.5 V			-10		-10		-10	μΑ μΑ	
loff		V _{CC} = 0,	VI or VO \leq 4.5 V			±100				±100		
ICEX		$V_{CC} = 5.5 \text{ V}, \text{ V}_{O} = 5.5 \text{ V}$	Outputs high			50		50		50	μA	
10‡		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
			Outputs high		1	250		250		250	μA	
ICC		$V_{CC} = 5.5 \text{ V}, I_O = 0,$ $V_I = V_{CC} \text{ or GND}$	Outputs low		24	30		30		30	mA	
	_		Outputs disabled		0.5	250		250		250	μA	
	Data	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			1.5		1.5		1.5		
inputs O	Other inputs at V _{CC} or GND	Outputs disabled			0.05		0.05		0.05	mA		
Control V _{CC} = 5.5 V, One input at 3 inputs Other inputs at V _{CC} or GN					1.5		1.5		1.5			
Ci		VI = 2.5 V or 0.5 V			4						pF	
Co		Vo = 2.5 V or 0.5 V			7.5						pF	

* On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 V$.

[‡]Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SNJ54ABT240FK Texas Instruments 54ABT240 OCTAL BUFFERS/DRIVERS W SN54ABT240, SN74ABT240A OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCBS098I - JANUARY 1991 - REVISED JUNE 2002

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER								
	FROM (INPUT)	TO (OUTPUT)	V(Т,	CC = 5 V A = 25°C	l, ;	MIN	МАХ	UNIT
			MIN	TYP	MAX			
^t PLH	A	v	1	2.9	4.3	0.8	5.5	ns
^t PHL		I	1.6	3.1	4.5	1	5.5	115
^t PZH	OE	~		3.1	5.8	0.8	7.5	ns
^t PZL	ÜE	I	1.1	2.7	6.2	0.8	7.7	115
^t PHZ	OE	v	1.8	4.6	5.9	1.7	7	ns
^t PLZ	UE	Ĩ	1.6	4	5.9	1.3	7.2	115

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER								
	FROM (INPUT)	TO (OUTPUT)	V _C	CC = 5 V A = 25°C	/, ;	MIN	МАХ	UNIT
			MIN	TYP	MAX			
^t PLH	A	V	1	2.9	4.1	1	4.8	ns
^t PHL		Ι	1.6	3.1	4.6	1.6	4.8	115
^t PZH	OE	V	1.1	3.1	4.7	1.1	5.2	ns
^t PZL	ÛE	Ι	1.1	2.7	5.8	1.1	6.2	115
^t PHZ	ŌĒ	v		4.6	5.7	1.8	6.4	ns
^t PLZ	ÛE	I	1.6	4	5.4	1.6	5.8	115

0 7 V TEST **S**1 O Open **500** Ω S From Output tPLH/tPHL Open \sim Under Test \cap GND tPLZ/tPZL 7 V C_L = 50 pF tPHZ/tPZH Open **500** Ω (see Note A) 3 V LOAD CIRCUIT **Timing Input** 1.5 V 0 V tw t_{su} th 3 V 3 V 1.5 V Input 1.5 V **Data Input** 1.5 V 1.5 V 0 V 0 V **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** SETUP AND HOLD TIMES PULSE DURATION 3 V 3 V Output 1.5 V 1.5 V 1.5 V 1.5 V Input Control 0 V 0 V ^tPZL ┢ ^tPLH ^tPHL ^tPLZ Output VOH 3.5 V Waveform 1 1.5 V 1.5 V 1.5 V Output V_{OL} + 0.3 V S1 at 7 V VOL VOL (see Note B) tPHZ -^tPHL -^tPLH ^tPZH Output ۷он ۷он V_{OH} – 0.3 V Waveform 2 1.5 V 1.5 V 1.5 V Output S1 at Open ≈0 V Vol (see Note B) **VOLTAGE WAVEFORMS** VOLTAGE WAVEFORMS **PROPAGATION DELAY TIMES** ENABLE AND DISABLE TIMES INVERTING AND NONINVERTING OUTPUTS LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9318801M2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9318801M2A SNJ54ABT 240FK	Samples
5962-9318801MRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9318801MR A SNJ54ABT240J	Samples
5962-9318801MSA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9318801MS A SNJ54ABT240W	Samples
SN74ABT240ADBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB240A	Samples
SN74ABT240ADW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT240A	Samples
SN74ABT240ADWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT240A	Samples
SN74ABT240AN	ACTIVE	PDIP	Ν	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74ABT240AN	Samples
SN74ABT240ANSR	ACTIVE	SOP	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT240A	Samples
SN74ABT240APW	ACTIVE	TSSOP	PW	20	70	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB240A	Samples
SN74ABT240APWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB240A	Samples
SNJ54ABT240FK	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9318801M2A SNJ54ABT 240FK	Samples
SNJ54ABT240J	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9318801MR A SNJ54ABT240J	Samples
SNJ54ABT240W	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9318801MS A SNJ54ABT240W	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

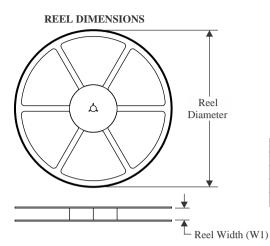
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

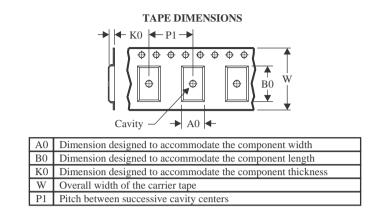
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

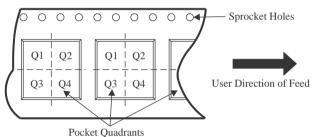
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

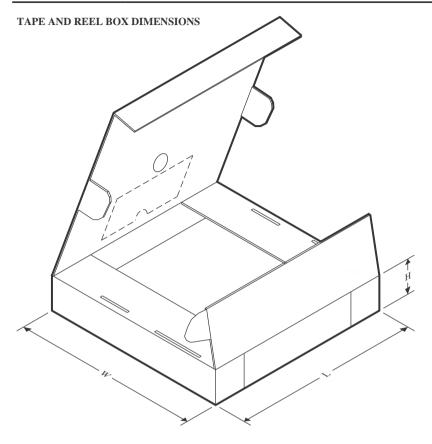


PACKAGE MATERIALS INFORMATION


7-Dec-2024

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



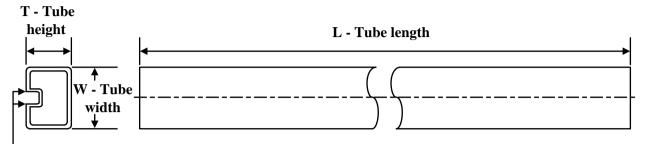
*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT240ADBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74ABT240ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74ABT240ANSR	SOP	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74ABT240APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

7-Dec-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABT240ADBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74ABT240ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74ABT240ANSR	SOP	NS	20	2000	367.0	367.0	45.0
SN74ABT240APWR	TSSOP	PW	20	2000	356.0	356.0	35.0



PACKAGE MATERIALS INFORMATION

7-Dec-2024

www.ti.com

TUBE

- B - Alignment groove width

*All dimensions are nominal

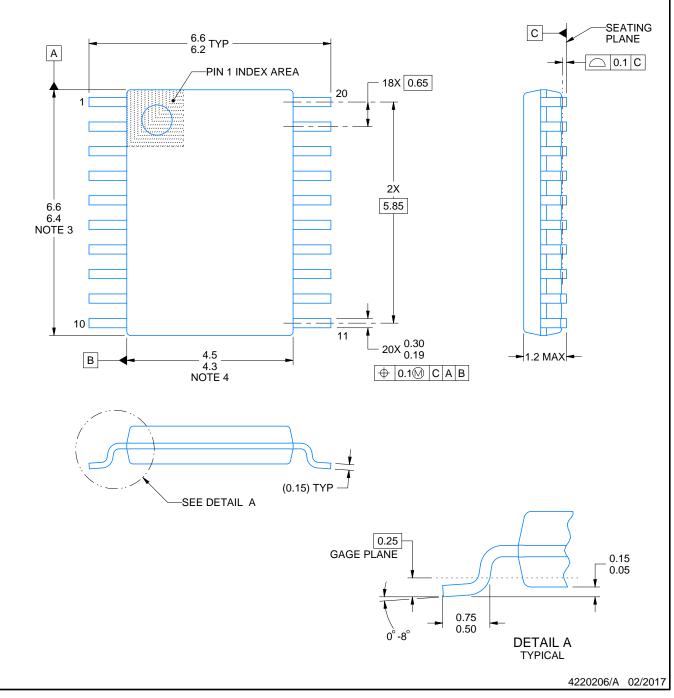
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-9318801M2A	FK	LCCC	20	55	506.98	12.06	2030	NA
5962-9318801MSA	W	CFP	20	25	506.98	26.16	6220	NA
SN74ABT240ADW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74ABT240AN	N	PDIP	20	20	506	13.97	11230	4.32
SN74ABT240APW	PW	TSSOP	20	70	530	10.2	3600	3.5
SNJ54ABT240FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54ABT240W	W	CFP	20	25	506.98	26.16	6220	NA

MECHANICAL DATA

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within Mil-Std 1835 GDFP2-F20



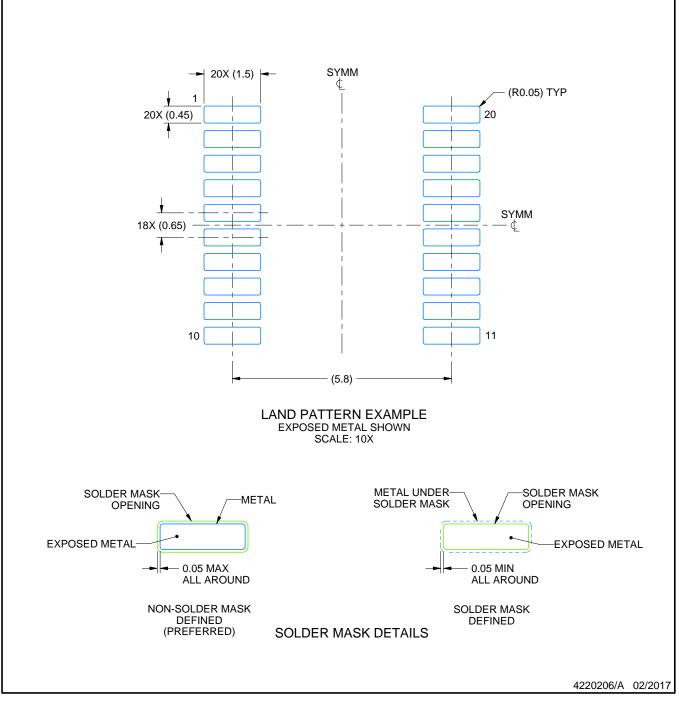
PW0020A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

EXAMPLE BOARD LAYOUT

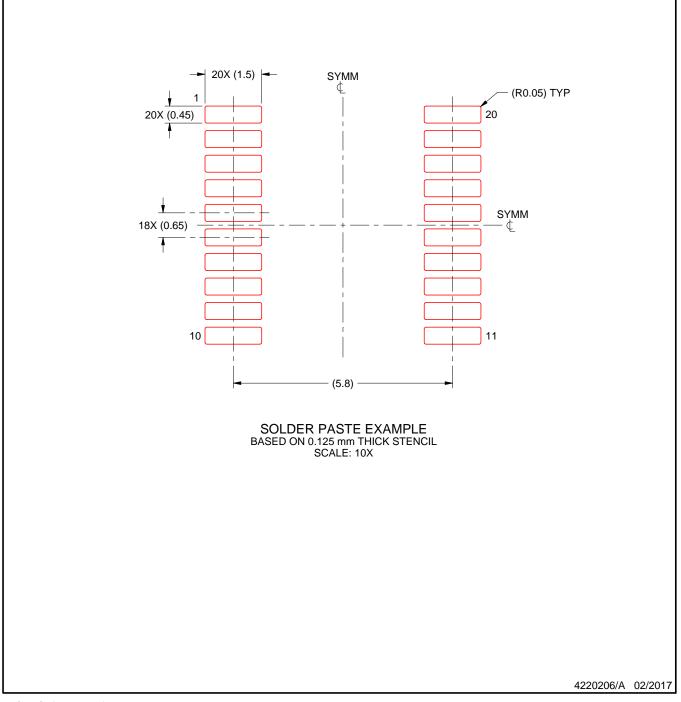
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0020A

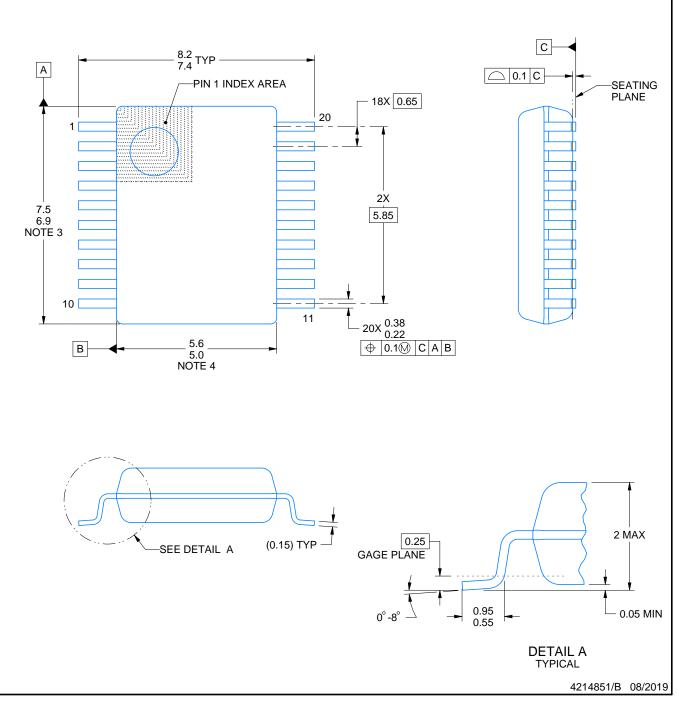
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


PW0020A

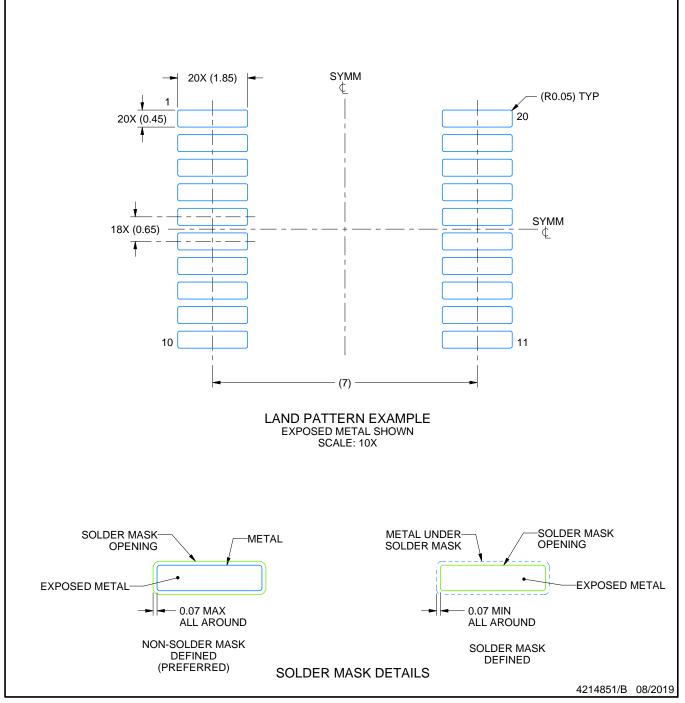
DB0020A

PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

EXAMPLE BOARD LAYOUT

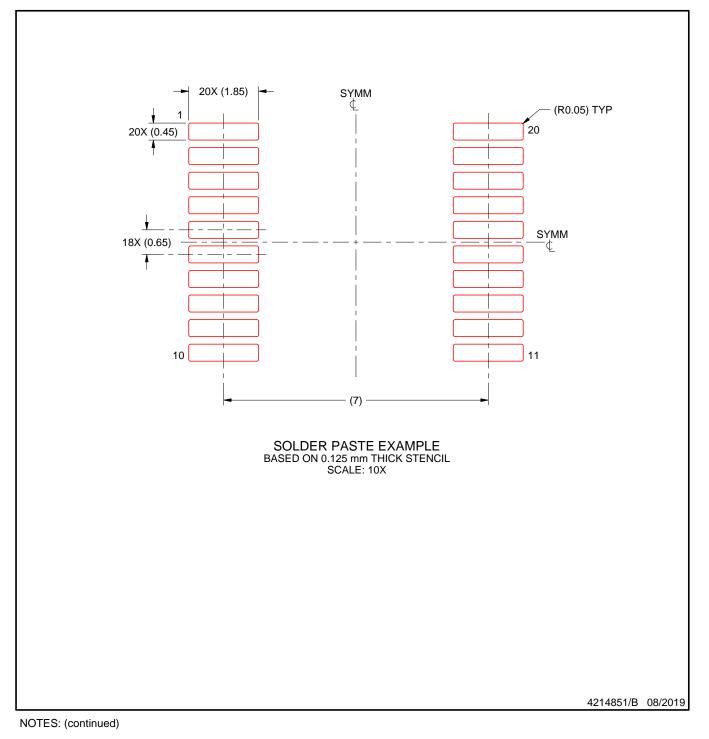
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

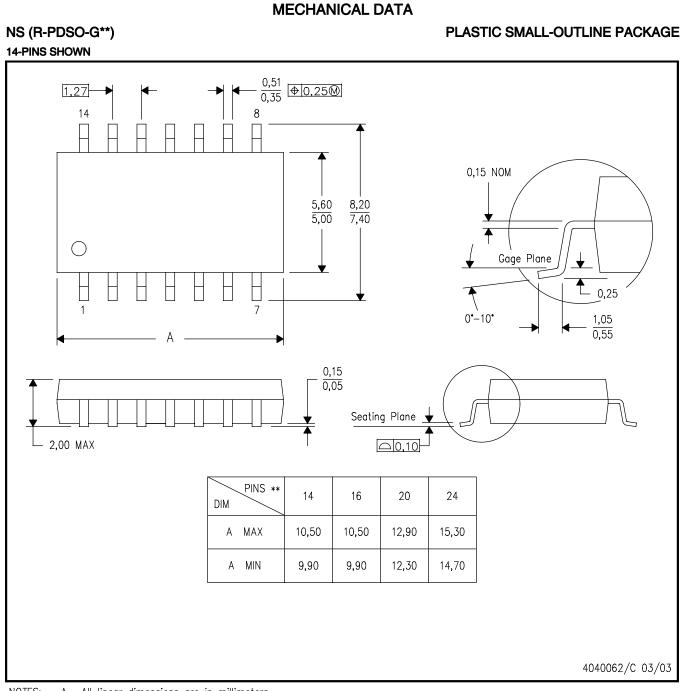


DB0020A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

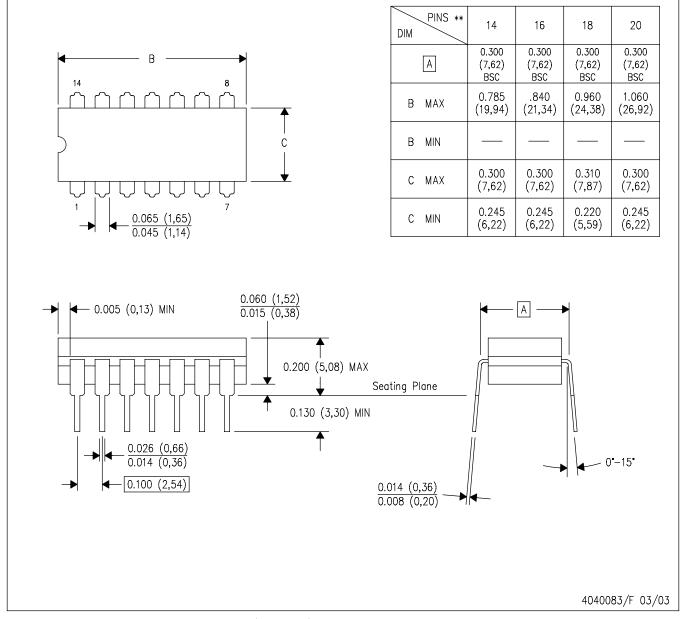
SMALL OUTLINE PACKAGE



8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

DB0020A


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

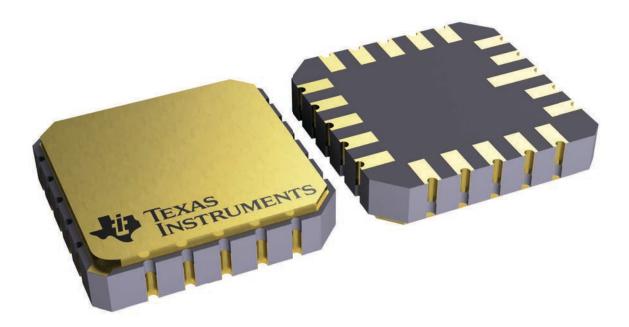
J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

GENERIC PACKAGE VIEW


FK 20

LCCC - 2.03 mm max height

8.89 x 8.89, 1.27 mm pitch

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

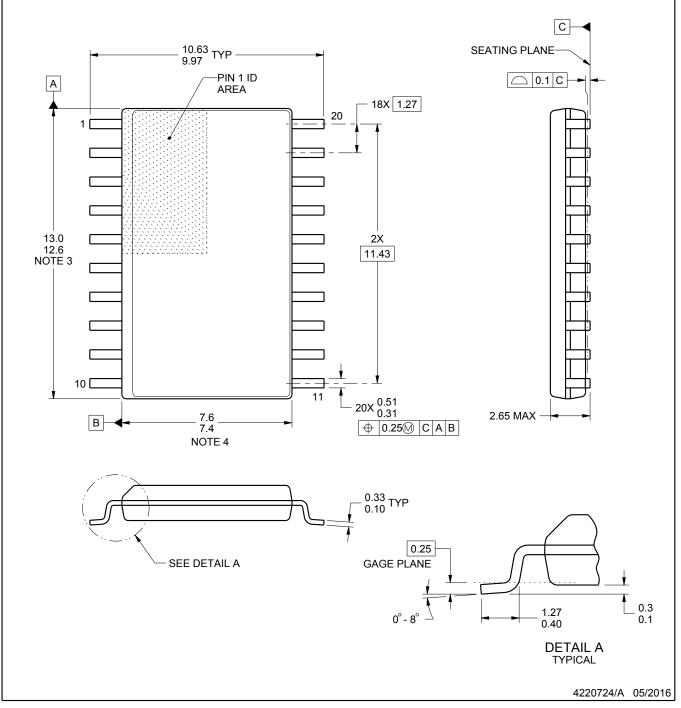
4229370\/A\

PLASTIC DUAL-IN-LINE PACKAGE

PINS ** 14 16 18 20 DIM 9 16 0.775 0.775 0.920 1.060 A MAX (19, 69)(19, 69)(23,37) (26,92) 0.745 0.745 0.850 0.940 0.260 (6,60) A MIN (21, 59)(18, 92)(18, 92)(23, 88)0.240 (6,10) MS-001 ★ \triangle AA BΒ AC AD 5 VARIATION 8 0.070 (1,78) 0.045 (1,14) ≁ 0.045 (1,14) 0.030 (0,76) 0.325 (8,26) 0.020 (0,51) MIN 0.300 (7,62) 0.015 (0,38) 0.200 (5,08) MAX Gauge Plane Seating Plane 0.010 (0,25) NOM 0.125 (3,18) MIN 1 0.100 (2,54) 🕨 0.430 (10,92) MAX 🖊 $\frac{0.021 \ (0,53)}{0.015 \ (0,38)}$ ▶ ◄ ⊕ 0.010 (0,25) M 14/18 Pin Only 20 Pin vendor option \triangle 4040049/E 12/2002

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.



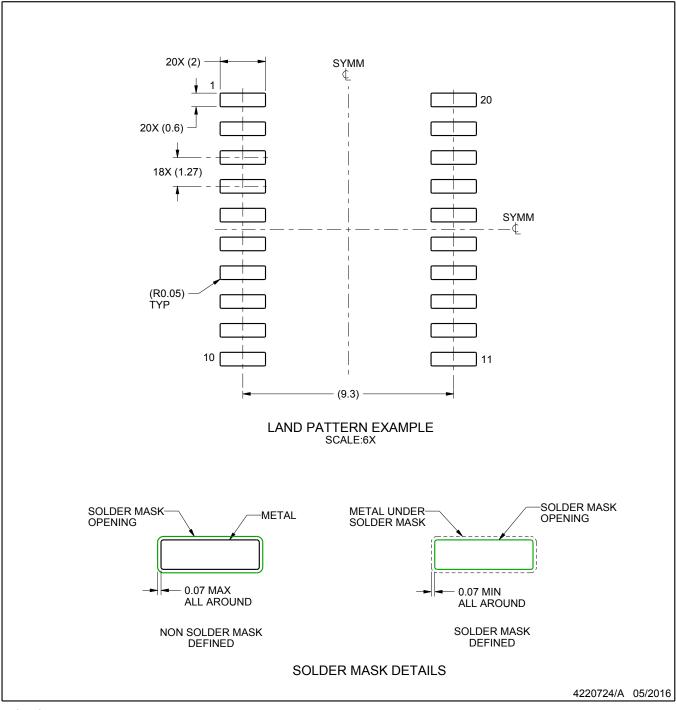
DW0020A

PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

EXAMPLE BOARD LAYOUT

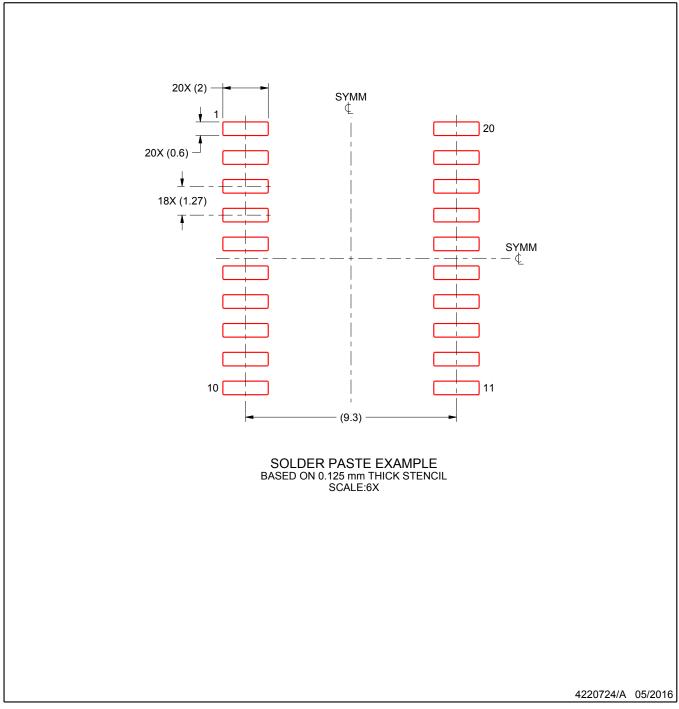
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


DW0020A

EXAMPLE STENCIL DESIGN

DW0020A

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.