

IRF640SPBF Datasheet

www.digi-electronics.com

M

DiGi Electronics Part Number	IRF640SPBF-DG
Manufacturer	Vishay Siliconix
Ianufacturer Product Number	IRF640SPBF
Description	MOSFET N-CH 200V 18A D2PAK
Detailed Description	N-Channel 200 V 18A (Tc) 3.1W (Ta), 130W (Tc) Surf ace Mount TO-263 (D2PAK)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

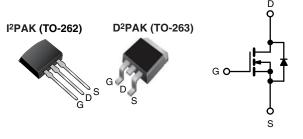
RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
IRF640SPBF	Vishay Siliconix
Series:	Product Status:
	Active
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
200 V	18A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
10V	180mOhm @ 11A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
4V @ 250μΑ	70 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	1300 pF @ 25 V
FET Feature:	Power Dissipation (Max):
	3.1W (Ta), 130W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
ТО-263 (D2PAK)	TO-263-3, D2PAK (2 Leads + Tab), TO-263AB
Base Product Number:	
IRF640	

Environmental & Export classification


RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Affected	EAR99
HTSUS:	
8541.29.0095	

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	200					
R _{DS(on)} (Ω)	$V_{GS} = 10 V$	0.18				
Q _g max. (nC)	70					
Q _{gs} (nC)	13					
Q _{gd} (nC)	39					
Configuration	Sing	le				

N-Channel MOSFET

FEATURES

- Surface mount
- Low-profile through-hole
- Available in tape and reel
- Dynamic dV/dt rating
- 150 °C operating temperature
- · Fast switching
- Fully avalanche rated
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combinations of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The D²PAK is a surface mount power package capable of accommodating die size up to HEX-4. It provides the highest power capability and the last lowest possible on-resistance in any existing surface mount package. The D²PAK is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application. The through-hole version (SiHF640L) is available for low-profile applications.

ORDERING INFORMATION								
Package	D ² PAK (TO-263)	D ² PAK (TO-263)	D ² PAK (TO-263)	I ² PAK (TO-262)				
Lead (Pb)-free and Halogen-free	SiHF640S-GE3	SiHF640STRL-GE3 a	SiHF640STRR-GE3 a	SiHF640L-GE3				
Lead (Pb)-free	IRF640SPbF	IRF640STRLPbF ^a	IRF640STRRPbF ^a	-				

Note

a. See device orientation.

ABSOLUTE MAXIMUM RATINGS (T _C :	= 25 °C, unl	less otherwis	se noted)			
PARAMETER	SYMBOL	LIMIT	UNIT			
Drain-Source Voltage			V _{DS}	200	V	
Gate-Source Voltage			V _{GS}	± 20	v	
Continuous Drain Current	V _{GS} at 10 V	$T_{C} = 25 \text{ °C}$ $T_{C} = 100 \text{ °C}$	1	18		
Continuous Drain Current	T _C = 100 °C	ID	11	A		
Pulsed Drain Current ^{a, e}		I _{DM}	72			
Linear Derating Factor		1.0	W/°C			
Single Pulse Avalanche Energy ^{b, e}			E _{AS}	580	mJ	
Avalanche Current ^a			I _{AR}	18	A	
Repetitive Avalanche Energy ^a			E _{AR}	13	mJ	
Maximum Dawer Dissinction	T _C =	25 °C	P	130		
Maximum Power Dissipation $T_A = 25 \text{ °C}$			P _D	3.1	W	
Peak Diode Recovery dV/dt ^{c, e}	dV/dt	5.0	V/ns			
Operating Junction and Storage Temperature Range	T _J , T _{stq}	-55 to +150	°C			
Soldering Recommendations (Peak temperature) ^d	for	10 s		300	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. $V_{DD} = 50$ V, starting $T_J = 25$ °C, L = 2.7 mH, $R_g = 25 \Omega$, $I_{AS} = 18$ A (see fig. 12).

c. $I_{SD} \le 18$ A, dI/dt ≤ 150 A/µs, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C.

d. 1.6 mm from case.

e. Uses IRF640, SiHF640 data and test conditions.

S16-0014-Rev. E, 18-Jan-16

Vishay Siliconix

THERMAL RESISTANCE RATINGS								
PARAMETER	SYMBOL	TYP.	MAX.	UNIT				
Maximum Junction-to-Ambient (PCB mounted, steady-state) ^a	R _{thJA}	-	40	°C/W				
Maximum Junction-to-Case (Drain)	R _{thJC}	-	1.0					

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material).

SPECIFICATIONS (T _J = 25 $^{\circ}$ C, U	nless otherw	ise noted)					
PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static					<u></u>	1	
Drain-Source Breakdown Voltage	V _{DS}	V _{GS}	= 0 V, I _D = 250 μΑ	200	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = 1 mA ^c	-	0.29	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 20 V$	-	-	± 100	nA
Zeus Osta Maltara Dusis Ouwant		V _{DS} =	= 200 V, V _{GS} = 0 V	-	-	25	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 160 \	/, V _{GS} = 0 V, T _J = 125 °C	-	-	250	μA
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	I _D = 11 A ^b	-	-	0.18	Ω
Forward Transconductance	g _{fs}	V _{DS} :	= 50 V, I _D = 11 A ^d	6.7	-	-	S
Dynamic							
Input Capacitance	C _{iss}		$V_{GS} = 0 V$,	-	1300	-	
Output Capacitance	C _{oss}		$V_{\text{DS}} = 25 \text{ V},$ $V_{\text{DS}} = 25 \text{ V},$ $f = 1.0 \text{ MHz}, \text{ see fig. 5 }^{\text{d}}$		430	-	pF
Reverse Transfer Capacitance	C _{rss}	f = 1.			130	-	
Total Gate Charge	Qg			-	-	70	
Gate-Source Charge	Q _{gs}	$V_{GS} = 10 V$	$V_{GS} = 10 V$ $I_D = 18 A, V_{DS} = 160 V,$ see fig. 6 and 13 ^{b, c}		-	13	nC
Gate-Drain Charge	Q _{gd}		See lig. 6 and 16	-	-	39	1
Turn-On Delay Time	t _{d(on)}			-	14	-	
Rise Time	t _r	V _{DD} =	= 100 V, I _D = 18 A,	-	51	-	ns
Turn-Off Delay Time	t _{d(off)}	R _g = 9.1 Ω, I	$R_D = 5.4 \Omega$, see fig. 10 ^{b, c}	-	45	-	
Fall Time	t _f			-	36	-	
Gate Input Resistance	Rg	f = 1	MHz, open drain	0.5	-	3.6	Ω
Drain-Source Body Diode Characteristic	cs					•	
Continuous Source-Drain Diode Current	١ _S	MOSFET sym showing the	ibol	-	-	18	•
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	72	A
Body Diode Voltage	V _{SD}	T _J = 25 °C	C, I _S = 18 A, V _{GS} = 0 V ^b	-	-	2.0	V
Body Diode Reverse Recovery Time	t _{rr}	T 05 00 1	40 A 31/31 400 A/ b 0	-	300	610	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$I_{\rm J} = 25 {}^{\circ}{\rm C}, I_{\rm F}$	= 18 A, dl/dt = 100 A/µs ^{b, c}	-	3.4	7.1	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	ırn-on time is negligible (turn	-on is dor	ninated b	y L _S and	L _D)

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

c. Uses IRF640/SiHF640 data and test conditions.

2

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

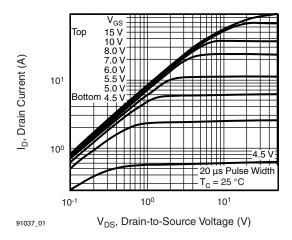


Fig. 1 - Typical Output Characteristics, $T_J = 25 \ ^{\circ}C$

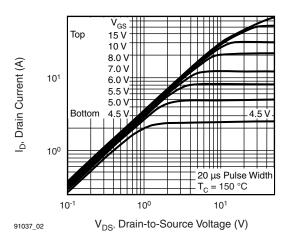


Fig. 2 - Typical Output Characteristics, T_J = 175 $^\circ\text{C}$

Fig. 3 - Typical Transfer Characteristics

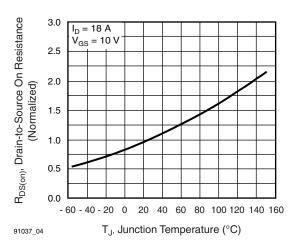


Fig. 4 - Normalized On-Resistance vs. Temperature

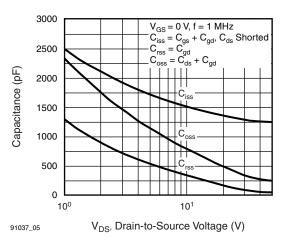


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

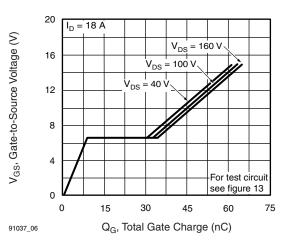


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

S16-0014-Rev. E, 18-Jan-16

3 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 91037

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

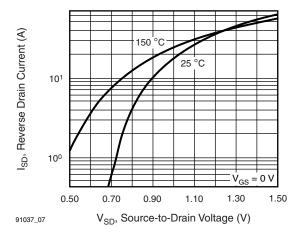


Fig. 7 - Typical Source-Drain Diode Forward Voltage

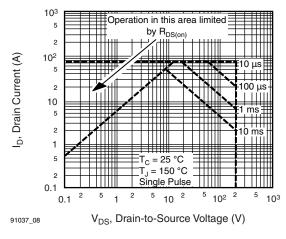


Fig. 8 - Maximum Safe Operating Area

IRF640S, SiHF640S, SiHF640L

Vishay Siliconix

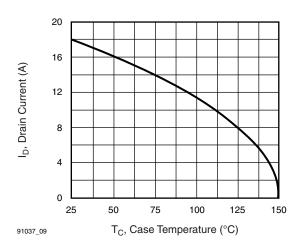


Fig. 9 - Maximum Drain Current vs. Case Temperature

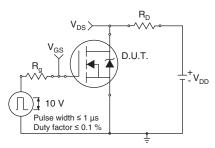


Fig. 10a - Switching Time Test Circuit

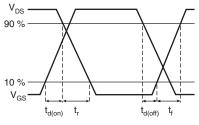


Fig. 10b - Switching Time Waveforms

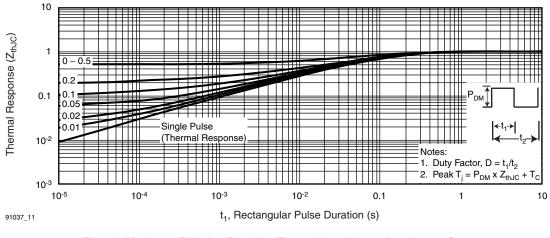


Fig. 10 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

S16-0014-Rev. E, 18-Jan-16

4

Document Number: 91037

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

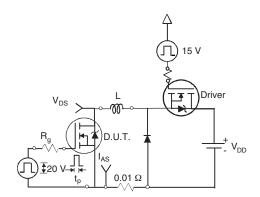


Fig. 12a - Unclamped Inductive Test Circuit

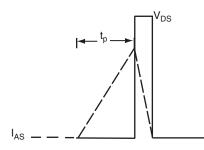


Fig. 12b - Unclamped Inductive Waveforms

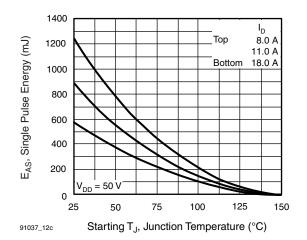


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

IRF640S, SiHF640S, SiHF640L

Vishay Siliconix

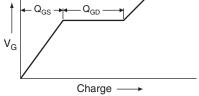
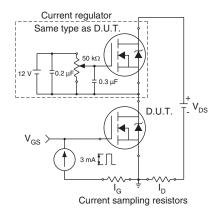
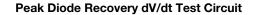
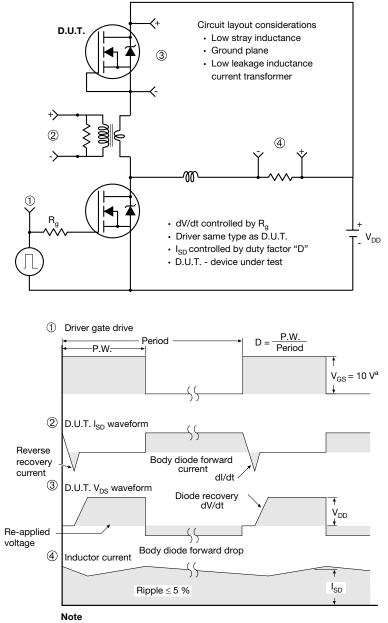


Fig. 13a - Basic Gate Charge Waveform


Fig. 13b - Gate Charge Test Circuit

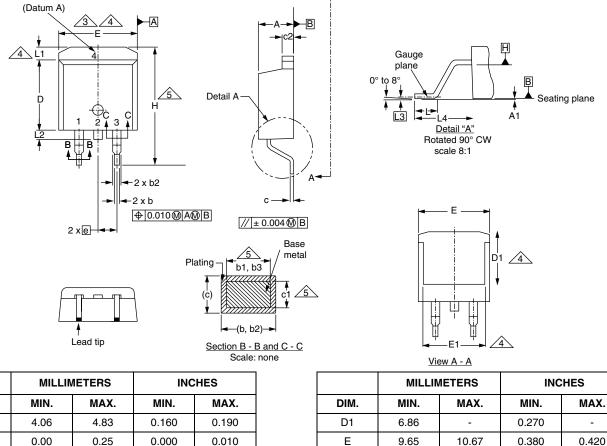
5

Vishay Siliconix

a. $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91037.


For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Package Information

Vishay Siliconix

TO-263AB (HIGH VOLTAGE)

А

	MILLIN	IETERS	INC	CHES			MILLIN	IETERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.		DIM.	MIN.	MAX.	MIN.	МА
А	4.06	4.83	0.160	0.190		D1	6.86	-	0.270	-
A1	0.00	0.25	0.000	0.010		E	9.65	10.67	0.380	0.4
b	0.51	0.99	0.020	0.039		E1	6.22	-	0.245	-
b1	0.51	0.89	0.020	0.035		е	2.54	BSC	0.100	BSC
b2	1.14	1.78	0.045	0.070		Н	14.61	15.88	0.575	0.6
b3	1.14	1.73	0.045	0.068		L	1.78	2.79	0.070	0.1
с	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.0
c1	0.38	0.58	0.015	0.023		L2	-	1.78	-	0.0
c2	1.14	1.65	0.045	0.065		L3	0.25	BSC	0.010	BSC
D	8.38	9.65	0.330	0.380		L4	4.78	5.28	0.188	0.2
ECN: S-82 DWG: 597	110-Rev. A, 0	15-Sep-08		·	·					

Notes

2. Dimensions are shown in millimeters (inches).

4. Thermal PAD contour optional within dimension E, L1, D1 and E1.

5. Dimension b1 and c1 apply to base metal only.

6. Datum A and B to be determined at datum plane H.

7. Outline conforms to JEDEC outline to TO-263AB.

-

0.625

0.110

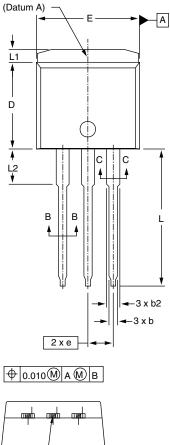
0.070

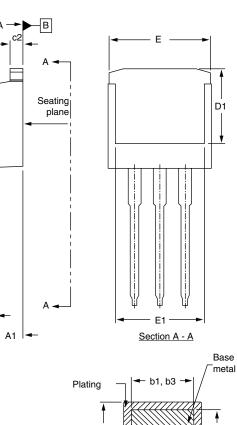
0.208

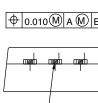
^{1.} Dimensioning and tolerancing per ASME Y14.5M-1994.

^{3.} Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.

-▶|| с


-




Package Information

Vishay Siliconix

I²PAK (TO-262) (HIGH VOLTAGE)

Lead	tip
------	-----

					⊡as met
ting	-	b1,	b3 -	► /	
¢ ¢					∳ c1
<u>,</u>	·	(b,	b2)		

Section B - B and C - C Scale: None

	MILLIN	IETERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
А	4.06	4.83	0.160	0.190
A1	2.03	3.02	0.080	0.119
b	0.51	0.99	0.020	0.039
b1	0.51	0.89	0.020	0.035
b2	1.14	1.78	0.045	0.070
b3	1.14	1.73	0.045	0.068
с	0.38	0.74	0.015	0.029
c1	0.38	0.58	0.015	0.023
c2	1.14	1.65	0.045	0.065
ECN: S-82	442-Rev. A, 2	27-Oct-08		

MILLIMETERS		INCHES	
MIN.	MAX.	MIN.	MAX.
8.38	9.65	0.330	0.380
6.86	-	0.270	-
9.65	10.67	0.380	0.420
6.22	-	0.245	-
2.54	BSC	0.100	BSC
13.46	14.10	0.530	0.555
-	1.65	-	0.065
3.56	3.71	0.140	0.146
	MIN. 8.38 6.86 9.65 6.22 2.54 13.46 -	MIN. MAX. 8.38 9.65 6.86 - 9.65 10.67 6.22 - 2.54 BSC 13.46 14.10 - - 1.65	MIN. MAX. MIN. 8.38 9.65 0.330 6.86 - 0.270 9.65 10.67 0.380 6.22 - 0.245 2.54 BSC 0.100 13.46 14.10 0.530 - 1.65 -

DWG: 5977

Notes

- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outmost extremes of the plastic body.
- 3. Thermal pad contour optional within dimension E, L1, D1, and E1.
- 4. Dimension b1 and c1 apply to base metal only.

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.