

IRF740APBF Datasheet

Manut

www.digi-electronics.com

DiGi Electronics Part Number	IRF740APBF-DG
Manufacturer	Vishay Siliconix
Manufacturer Product Number	IRF740APBF
Description	MOSFET N-CH 400V 10A TO220AB
Detailed Description	N-Channel 400 V 10A (Tc) 125W (Tc) Through Hole TO-220AB

https://www.DiGi-Electronics.com

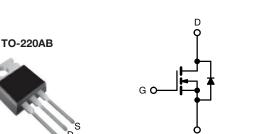
Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
IRF740APBF	Vishay Siliconix
Series:	Product Status:
	Active
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (ld) @ 25°C:
400 V	10A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
10V	550mOhm @ 6A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
4V @ 250μΑ	36 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±30V	1030 pF @ 25 V
FET Feature:	Power Dissipation (Max):
• • • • • • • • • • • • • • • • • • •	125W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Through Hole
Supplier Device Package:	Package / Case:
ТО-220АВ	TO-220-3
Base Product Number:	
IRF740	


Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Affected	EAR99
HTSUS:	
8541.29.0095	

IRF740A

Vishay Siliconix

S N-Channel MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	400				
R _{DS(on)} (Ω)	V _{GS} = 10 V 0.55				
Q _g (Max.) (nC)	36				
Q _{gs} (nC)	9.9				
Q _{gd} (nC)	16				
Configuration	Single				

Power MOSFET

FEATURES

 Low gate charge Q_g results in simple drive requirement

- Improved gate, avalanche, and dynamic dV/dt ruggedness
- Fully characterized capacitance and avalanche voltage and current
- Effective C_{oss} specified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

APPLICATIONS

- Switch mode power supply (SMPS)
- Uninterruptable power supply
- High speed power switching

TYPICAL SMPS TOPOLOGIES

- Single transistor flyback Xfmr. reset
- Single transistor forward Xfmr. reset (both for US line input only)

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRF740APbF
Lead (Pb)-free and halogen-free	IRF740APbF-BE3

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-source voltage			V _{DS}	400	N
Gate-source voltage			V _{GS}	± 30	V
Continuous drain current	V _{GS} at 10 V	T _C = 25 °C		10	
Continuous drain current	V _{GS} at 10 V	T _C = 100 °C	ID	6.3	A
Pulsed drain current ^a			I _{DM}	40	
Linear derating factor				1.0	W/°C
Single pulse avalanche energy ^b			E _{AS}	630	mJ
Repetitive avalanche current ^a			I _{AR}	10	A
Repetitive avalanche energy ^a			E _{AR}	12.5	mJ
Maximum power dissipation $T_{\rm C} = 25 ^{\circ}{\rm C}$			PD	125	W
Peak diode recovery dV/dt ^c			dV/dt	5.9	V/ns
Operating junction and storage temperature range		T _J , T _{stg}	- 55 to + 150	- °C	
Soldering recommendations (peak temperature) ^d	For	10 s		300 ^d	U
Mounting torque	6-32 or M3 screw			10	lbf · in
				1.1	N·m

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. $V_{DD} = 50 \text{ V}$, starting $T_J = 25 \text{ °C}$, L = 12.6 mH, $R_q = 25 \Omega$, $I_{AS} = 10 \text{ A}$ (see fig. 12)

c. $I_{SD} \le 10$ A, $dV/dt \le 330$ A/µs, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C

d. 1.6 mm from case

S21-0853-Rev. D, 16-Aug-2021

IRF740A

Vishay Siliconix

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Maximum junction-to-ambient	R _{thJA}	-	62		
Case-to-sink, flat, greased surface	R _{thCS}	0.50	-	°C/W	
Maximum junction-to-case (drain)	R _{thJC}	-	1.0		

PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNIT
Static					1		1
Drain-source breakdown voltage	V _{DS}	V _{GS} = 0	V, I _D = 250 μA	400	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_J$	Reference t	to 25 °C, I _D = 1 mA	-	0.48	-	V/°C
Gate-source threshold voltage	V _{GS(th)}	V _{DS} = V	_{GS} , I _D = 250 μΑ	2.0	-	4.0	V
Gate-source leakage	I _{GSS}	V _G	_S = ± 30 V	-	-	± 100	nA
7		$V_{DS} = 4$	00 V, V _{GS} = 0 V	-	-	25	μA
Zero gate voltage drain current	IDSS	V _{DS} = 320 V, V	/ _{GS} = 0 V, T _J = 125 °C	-	-	250	
Drain-source on-state resistance	R _{DS(on)}	$V_{GS} = 10 V$	I _D = 6.0 A ^b	-	-	0.55	Ω
Forward transconductance	9 _{fs}	V _{DS} = 5	0 V, I _D = 6.0 A ^b	4.9	-	-	S
Dynamic							•
Input capacitance	Ciss	V	$G_{GS} = 0 V_{s}$	-	1030	-	
Output capacitance	C _{oss}	V	_{DS} = 25 V,	-	170	-	
Reverse transfer capacitance	C _{rss}	f = 1.0	MHz, see fig. 5	-	7.7	-	
		$V_{GS} = 0 V, V_{DS}$	/ _{DS} = 1.0 V, f = 1.0 MHz -		1490	-	pF
Output capacitance	C _{oss}	$V_{GS} = 0 V, V_{DS}$	s = 320 V, f = 1.0 MHz	-	52	-	1
Effective output capacitance	C _{oss}	$V_{GS} = 0 V, V_{DS} = 0 V to 320 V$		-	61	-	
Total gate charge	Qg	V _{GS} = 10 V I _D = 10 A, V _{DS} = 320 V, see fig. 6 and 13 ^b		-	-	36	nC
Gate-source charge	Q _{gs}			-	-	9.9	
Gate-drain charge	Q _{gd}			-	-	16	
Turn-on delay time	t _{d(on)}		·	-	10	-	
Rise time	t _r	V _{DD} = 200 V, I _D = 10 A,		-	35	-	
Turn-off delay time	t _{d(off)}		= 19.5 Ω , see fig. 10 ^b	-	24	-	ns
Fall time	t _f			-	22	-	
Drain-Source Body Diode Characteristic	s						
Continuous source-drain diode current	I _S	MOSFET symbol showing the integral reverse p - n junction diode		-	-	10	А
Pulsed diode forward current ^a	I _{SM}			-	-	40	
Body diode voltage	V _{SD}	$T_J = 25 \text{ °C}, I_S = 10 \text{ A}, V_{GS} = 0 \text{ V}^{b}$		-	-	2.0	V
Body diode reverse recovery time	t _{rr}	T 25 °C I	10 A dl/dt - 100 A/uch	-	240	360	ns
Body diode reverse recovery charge	Q _{rr}	$J = 23 \text{O}, I_{\text{F}} =$	10 A, dl/dt = 100 A/µs ^b	-	1.9	2.9	μC
Forward turn-on time	t _{on}	Intrinsic turn	-on time is negligible (turn	-on is doi	minated b	y L _S and	L _D)

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Pulse width $\leq 300~\mu s;~duty~cycle \leq 2~\%$

2

IRF740A

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

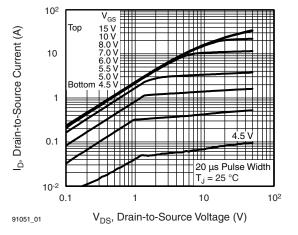


Fig. 1 - Typical Output Characteristics, $T_C = 25 \ ^{\circ}C$

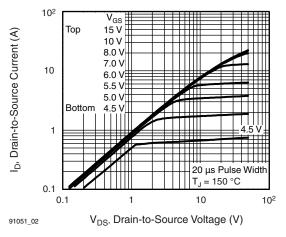


Fig. 1 - Typical Output Characteristics, $T_C = 150$ °C

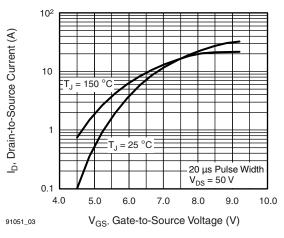


Fig. 2 - Typical Transfer Characteristics

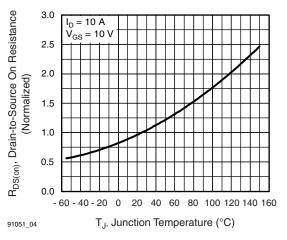


Fig. 3 - Normalized On-Resistance vs. Temperature

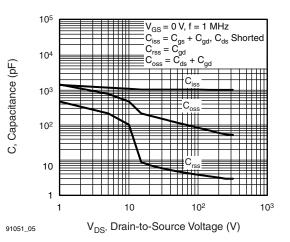


Fig. 4 - Typical Capacitance vs. Drain-to-Source Voltage

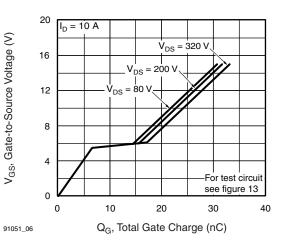


Fig. 5 - Typical Gate Charge vs. Gate-to-Source Voltage

S21-0853-Rev. D, 16-Aug-2021

3 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 91051

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

IRF740A

Vishay Siliconix

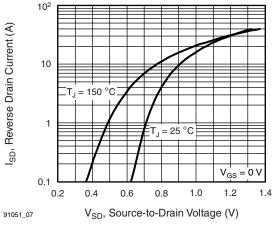


Fig. 6 - Typical Source-Drain Diode Forward Voltage

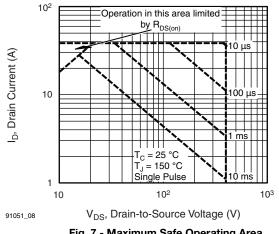


Fig. 7 - Maximum Safe Operating Area

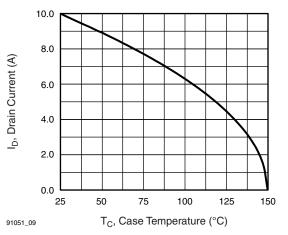


Fig. 8 - Maximum Drain Current vs. Case Temperature

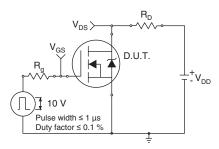


Fig. 9 - Switching Time Test Circuit

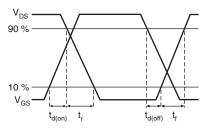
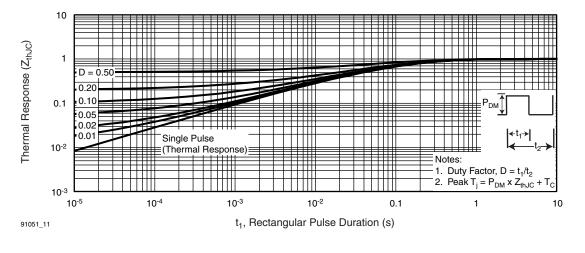



Fig. 10 - Switching Time Waveforms

S21-0853-Rev. D, 16-Aug-2021

4 For technical questions, contact: hvm@vishay.com

Document Number: 91051

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Siliconix

IRF740A

Fig. 12 - Unclamped Inductive Test Circuit

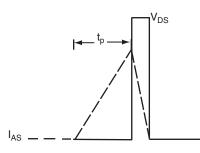


Fig. 13 - Unclamped Inductive Waveforms

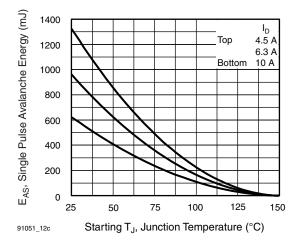


Fig. 14 - Maximum Avalanche Energy vs. Drain Current

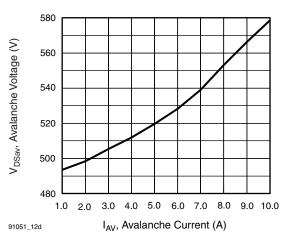


Fig. 15 - Typical Drain-to-Source Voltage vs. Avalanche Current

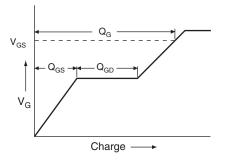


Fig. 16 - Basic Gate Charge Waveform

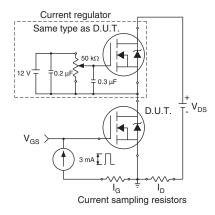
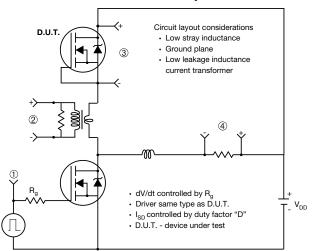
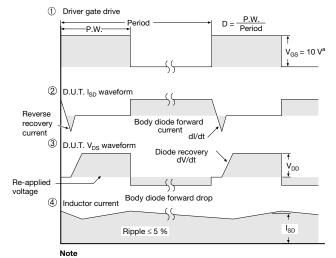


Fig. 17 - Gate Charge Test Circuit

5




www.vishay.com

Vishay Siliconix

IRF740A

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices

Fig. 18 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg291051.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.