

SI2333DS-T1-E3 Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number SI2333DS-T1-E3-DG

Manufacturer Vishay Siliconix

Manufacturer Product Number SI2333DS-T1-E3

Description MOSFET P-CH 12V 4.1A SOT23-3

Detailed Description P-Channel 12 V 4.1A (Ta) 750mW (Ta) Surface Mou

nt SOT-23-3 (TO-236)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
SI2333DS-T1-E3	Vishay Siliconix
Series:	Product Status:
TrenchFET®	Active
FET Type:	Technology:
P-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
12 V	4.1A (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
1.8V, 4.5V	32mOhm @ 5.3A, 4.5V
Vgs(th) (Max) @ Id:	Gate Charge (Qg) (Max) @ Vgs:
1V @ 250μA	18 nC @ 4.5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±8V	1100 pF @ 6 V
FET Feature:	Power Dissipation (Max):
	750mW (Ta)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
SOT-23-3 (TO-236)	TO-236-3, SC-59, SOT-23-3
Base Product Number:	
SI2333	

Environmental & Export classification

8541.21.0095

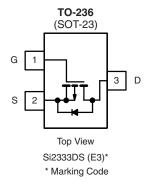
RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Vishay Siliconix

P-Channel 12-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)			
	0.032 at V _{GS} = - 4.5 V	- 5.3			
- 12	0.042 at V _{GS} = - 2.5 V	- 4.6			
	0.059 at V _{GS} = - 1.8 V	- 3.9			

FEATURES


- Halogen-free According to IEC 61249-2-21 Available
- TrenchFET® Power MOSFET

APPLICATIONS

- Load Switch
- PA Switch

Ordering Information: Si2333DS-T1-E3 (Lead (Pb)-free) Si2333DS-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS T _A = 25 °C, unless otherwise noted					
Parameter	Symbol	5 s	Steady State	Unit	
Drain-Source Voltage		V _{DS}	- 12		V
Gate-Source Voltage		V _{GS}	± 8		
Continuous Drain Current (T _J = 150 °C) ^{a, b}	T _A = 25 °C	- I _D	- 5.3	- 4.1	^
	T _A = 70 °C		- 4.2	- 3.3	
Pulsed Drain Current		I _{DM}	- 20		Α
Continuous Source Current (Diode Conduction) ^{a, b}		I _S	- 1.0	- 0.6	
2 2	T _A = 25 °C	P _D	1.25	0.75	W
Maximum Power Dissipation ^{a, b}	T _A = 70 °C		0.8	0.48	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Typical	Maximum	Unit	
Marrian de Ambienta	t ≤ 5 s	R _{thJA}	75	100	°C/W
Maximum Junction-to-Ambient ^a	Steady State		120	166	
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	40	50	

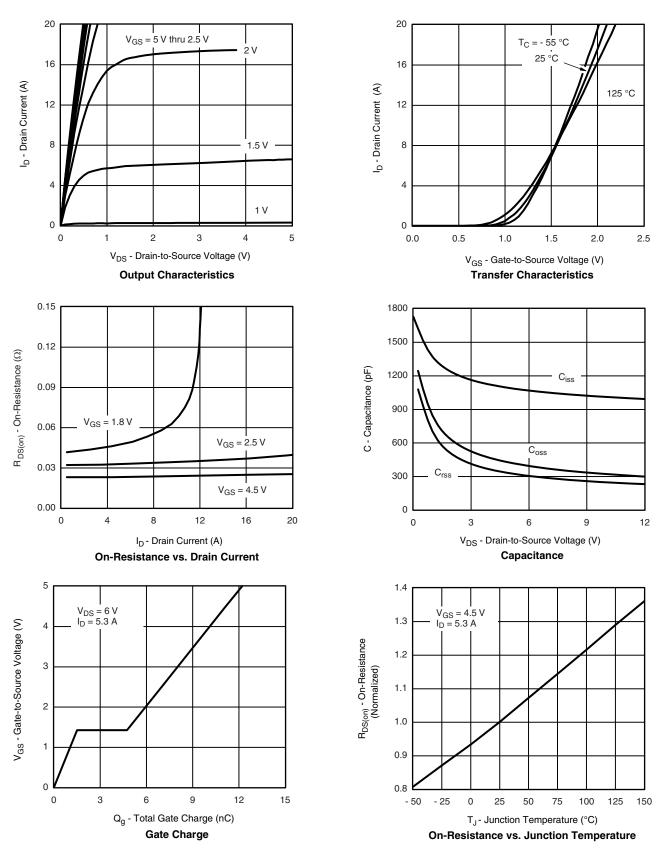
- a. Surface Mounted on 1" x 1" FR4 board.
- b. Pulse width limited by maximum junction temperature.

Vishay Siliconix

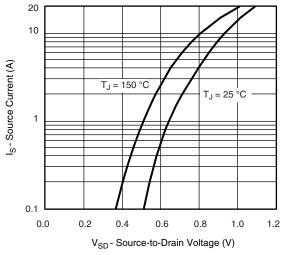
SPECIFICATIONS T _J = 25 °C, unless otherwise noted								
			Limits					
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
Static	Static							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	- 12			V		
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	- 0.40		- 1.0	V		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA		
Zara Cata Valtaga Drain Current	1	V _{DS} = - 9.6 V, V _{GS} = 0 V			- 1	μΑ		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -9.6 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			- 10			
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 20			Α		
		$V_{GS} = -4.5 \text{ V}, I_D = -5.3 \text{ A}$		0.025	0.032			
Drain-Source On-Resistance ^a	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -4.6 \text{ A}$		0.033	0.042	Ω		
		$V_{GS} = -1.8 \text{ V}, I_D = -2.0 \text{ A}$		0.046	0.059			
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 5 V, I _D = - 5.3 A		17		S		
Diode Forward Voltage	V_{SD}	I _S = - 1.0 A, V _{GS} = 0 V		- 0.7	- 1.2	V		
Dynamic ^b								
Total Gate Charge	Q_g	V CVV 45V		11.5	18			
Gate-Source Charge	Q _{gs}	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}$ $I_{D} \cong -5.3 \text{ A}$		1.5		nC		
Gate-Drain Charge	Q_{gd}	ID = - 3.3 A		3.2				
Input Capacitance	C _{iss}			1100				
Output Capacitance	C _{oss}	$V_{DS} = -6 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		390		pF		
Reverse Transfer Capacitance	C _{rss}			300				
Switching ^c								
Turn On Time	t _{d(on)}			25	40	- ns		
Turn-On Time	t _r	$V_{DD} = -6 \text{ V}, R_L = 6 \Omega$ $I_D \cong -1.0 \text{ A}, V_{GEN} = -4.5 \text{ V}$		45	70			
Turn-Off Time	t _{d(off)}	$I_D \cong -1.0 \text{ A}, V_{GEN} = -4.5 \text{ V}$ $= R_G = 6 \Omega$		72	110			
Turn-Oil Time	t _f			60	90			

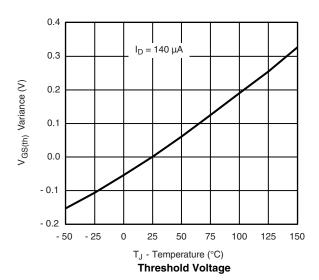
Notes:

- a. Pulse test: PW \leq 300 μ s, duty cycle \leq 2 %.
- b. For design aid only, not subject to production testing.
- c. Switching time is essentially independent of operating temperature.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

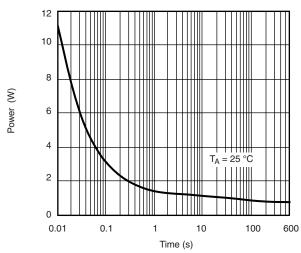
Vishay Siliconix


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

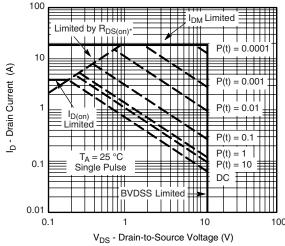

Vishay Siliconix

VISHAY.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



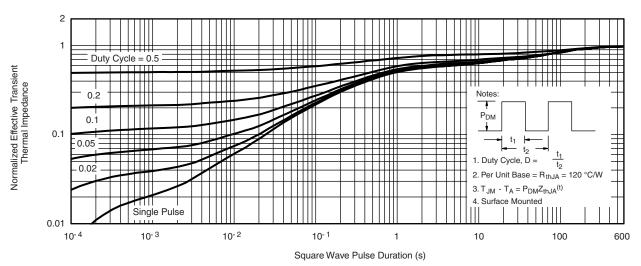
Source-Drain Diode Forward Voltage



0.15 0.12 0.09 0.00

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power

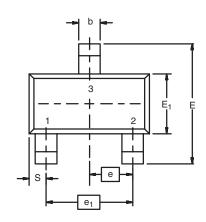


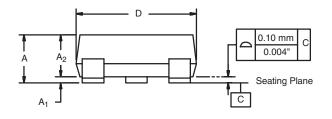
* V_{DS} - Drain-to-Source Voltage (V) * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified **Safe Operating Area**

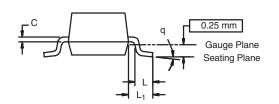
Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72023.




Package Information

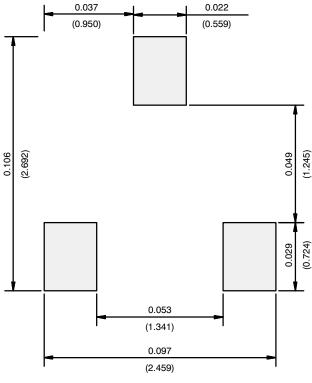
Vishay Siliconix

SOT-23 (TO-236): 3-LEAD

Dim —	MILLIN	IETERS	INCHES		
	Min	Max	Min	Max	
Α	0.89	1.12	0.035	0.044	
A ₁	0.01	0.10	0.0004	0.004	
A ₂	0.88	1.02	0.0346	0.040	
b	0.35	0.50	0.014	0.020	
С	0.085	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E ₁	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.0374 Ref		
e ₁	1.90	BSC	0.074	8 Ref	
L	0.40	0.60	0.016	0.024	
L ₁	0.64	64 Ref 0.025 Ref		i Ref	
S	0.50 Ref		0.020 Ref		
q	3°	8°	3°	8°	
ECN: S-03946-Rev. K. 09-	Jul-01				

DWG: 5479

Document Number: 71196


09-Jul-01

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Revision: 21-Jan-08

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com