

SI8469DB-T2-E1 Datasheet

www.digi-electronics.com

Mar

DiGi Electronics Part Number	SI8469DB-T2-E1-DG
Manufacturer	Vishay Siliconix
Manufacturer Product Number	SI8469DB-T2-E1
Description	MOSFET P-CH 8V 4.6A 4MICROFOOT
Detailed Description	P-Channel 8 V 4.6A (Ta) 780mW (Ta), 1.8W (Tc) Surf ace Mount 4-Microfoot

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

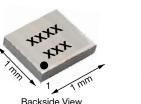
Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
SI8469DB-T2-E1	Vishay Siliconix
Series:	Packaging:
TrenchFET®	Tape & Reel (TR)
Part Status:	FET Type:
Obsolete	P-Channel
Technology:	Drain to Source Voltage (Vdss):
MOSFET (Metal Oxide)	8 V
Current - Continuous Drain (Id) @ 25°C:	Drive Voltage (Max Rds On, Min Rds On):
4.6A (Ta)	4.5V
Rds On (Max) @ ld, Vgs:	Vgs(th) (Max) @ ld:
64mOhm @ 1.5A, 4.5V	800mV @ 250µA
Gate Charge (Qg) (Max) @ Vgs:	Vgs (Max):
17 nC @ 4.5 V	±5V
Input Capacitance (Ciss) (Max) @ Vds:	FET Feature:
900 pF @ 4 V	
Power Dissipation (Max):	Operating Temperature:
780mW (Ta), 1.8W (Tc)	-55°C ~ 150°C (TJ)
Mounting Type:	Supplier Device Package:
Surface Mount	4-Microfoot
Package / Case:	Base Product Number:
4-UFBGA	SI8469

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

Si8469DB Vishay Siliconix



www.vishay.com

P-Channel 8 V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A) ^{a, e}	Q _g (TYP.)		
-8	0.064 at V _{GS} = -4.5 V	-4.6			
	0.076 at V _{GS} = -2.5 V	-4.2	6.9 nC		
	0.115 at V _{GS} = -1.5 V	-3.4	0.9110		
	0.180 at V _{GS} = -1.2 V	-1.2			

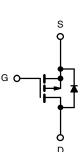
MICRO FOOT[®] 1 x 1

D Bump Side View

Marking Code: xxxx = 8469

xxx = Date / lot traceability code

Ordering Information:


Si8469DB-T2-E1 (lead (Pb)-free and halogen-free)

FEATURES

- TrenchFET[®] power MOSFET
- Ultra-Small 1 mm x 1 mm maximum outline
- Ultra-thin 0.548 mm maximum height
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Load switches, battery switches and charger switches in portable device applications
- Load switch for 1.2 V power line

RoHS

COMPLIANT

HALOGEN

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	$(T_A = 25 \degree C, unless)$	otherwise noted			
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V _{DS}	-8	V	
Gate-Source Voltage		V _{GS} ± 5		V	
	T _A = 25 °C		-4.6 ^a		
Continuous Drain Current (T. 150 °C)	T _A = 70 °C		-3.7 ^a		
Continuous Drain Current ($T_J = 150 \ ^{\circ}C$)	T _A = 25 °C	I _D	-3.6 ^b		
	T _A = 70 °C		-2.8 ^b	А	
Pulsed Drain Current		I _{DM}	-15		
Cantinuaua Sauraa Drain Diada Currant	T _A = 25 °C	1	-1.4 ^a	_	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	-0.6 ^b		
	T _A = 25 °C		1.8 ^a		
Maximum Dawar Dissinction	T _A = 70 °C	D	1.1 ^a	w	
Maximum Power Dissipation	T _A = 25 °C	P _D	0.78 ^b		
	T _A = 70 °C		0.5 ^b		
Operating Junction and Storage Temperature F	T _J , T _{stg}	-55 to +150			
Paakaga Deflaw Conditiona C	VPR	-	260	°C	
Package Reflow Conditions ^c	IR/Convection		260		

THERMAL RESISTANCE RATINGS

PARAMETER	SYMBOL	TYPICAL	MAXIMUM	UNIT		
Maximum Junction-to-Ambient ^{f, g}	t = 10 s	Р	55	70	°C/W	
Maximum Junction-to-Ambient h, i	t = 10 s	R _{thJA}	125	160	C/W	

Notes

a. Surface mounted on $1" \times 1"$ FR4 board with full copper, t = 10 s.

b. Surface mounted on 1" x 1" FR4 board with minimum copper, t = 10 s.

c. Refer to IPC/JEDEC® (J-STD-020), no manual or hand soldering.

d. In this document, any reference to case represents the body of the MICRO FOOT device and foot is the bump.

e. Based on $T_A = 25$ °C.

f. Surface mounted on 1" x 1" FR4 board with full copper.

g. Maximum under steady state conditions is 100 °C/W.

h. Surface mounted on 1" x 1" FR4 board with minimum copper.

i. Maximum under steady state conditions is 190 $^{\circ}\text{C/W}.$

S15-1510-Rev. B, 29-Jun-15

1

Document Number: 67091

For technical questions, contact: pmostechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

www.vishay.com

Si8469DB

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static							
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = -250 μA	-8	-	_	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_J$		-	-6.4	-		
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	-	2.4	-	mV/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.35	-	-0.8	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 5 V$	-	-	± 100	nA	
		$V_{DS} = -8 V, V_{GS} = 0 V$	-	-	-1		
Zero Gate Voltage Drain Current	IDSS	V _{DS} = -8 V, V _{GS} = 0 V, T _J = 70 °C	-	-	-10	μA	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 V, V_{GS} = -4.5 V$	-10	-	-	Α	
		V _{GS} = -4.5 V, I _D = -1.5 A	-	0.052	0.064		
	_	V _{GS} = -2.5 V, I _D = -1 A	-	0.062	0.076		
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = -1.5 V, I _D = -0.3 A	-	0.085	0.115	Ω	
		V _{GS} = -1.2 V, I _D = -0.3 A	-	0.110	0.180		
Forward Transconductance ^a	g fs	V _{DS} = -4 V, I _D = -1.5 A	-	12	-	S	
Dynamic ^b	<u> </u>						
Input Capacitance	C _{iss}		-	900	-	pF	
Output Capacitance	Coss	V _{DS} = -4 V, V _{GS} = 0 V, f = 1 MHz	-	315	-		
Reverse Transfer Capacitance	C _{rss}		-	260	-		
Total Gate Charge	Qq		-	11	17	nC	
Gate-Source Charge	Q _{qs}	V _{DS} = -4 V, V _{GS} = -4.5 V, I _D = -1.5 A	-	0.85	-		
Gate-Drain Charge	Q _{ad}		-	2.5	-		
Gate Resistance	R _q	V _{GS} = -0.1 V, f = 1 MHz	-	6	-	Ω	
Turn-On Delay Time	t _{d(on)}		-	15	30		
Rise Time	tr	$V_{DD} = -4 V, R_1 = 2.7 \Omega$	-	22	45	- ns	
Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong\text{-1.5 A},\text{V}_\text{GEN}=\text{-4.5 V},\text{R}_\text{g}=1~\Omega$	-	35	70		
Fall Time	t _f		-	17	35		
Drain-Source Body Diode Characteris	tics	·					
Continuous Source-Drain Diode Current	ا _S	T _A = 25 °C	-	-	-1.5	•	
Pulse Diode Forward Current	I _{SM}		-	-	-15	A	
Body Diode Voltage	V _{SD}	I _S = -1.5 A, V _{GS} = 0 V	-	-0.9	-1.3	V	
Body Diode Reverse Recovery Time	t _{rr}		-	25	50	ns	
Body Diode Reverse Recovery Charge	Q _{rr}		-	10	20	nC	
Reverse Recovery Fall Time	ta	$I_F = -1.5 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, \text{T}_J = 25 ^\circ\text{C}$	-	10	-		
Reverse Recovery Rise Time	t _b	1	-	15	-	ns	

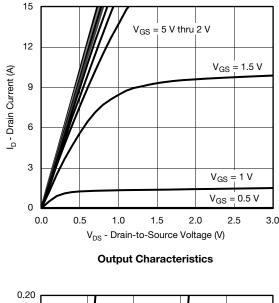
Notes

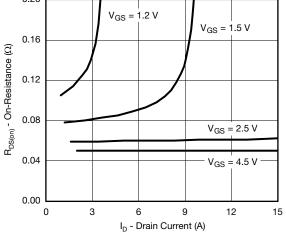
a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

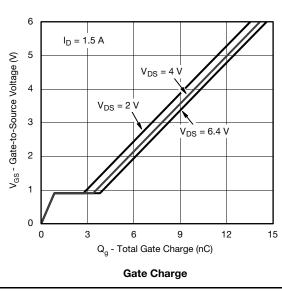
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

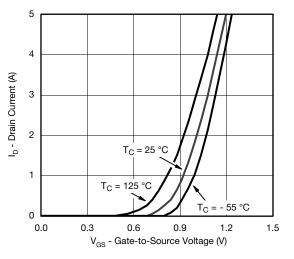
2

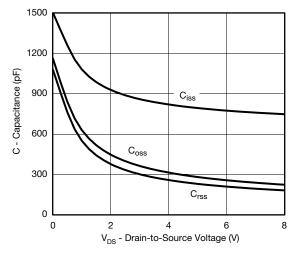

For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



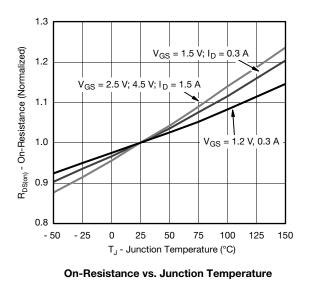
www.vishay.com


Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



On-Resistance vs. Drain Current and Gate Voltage

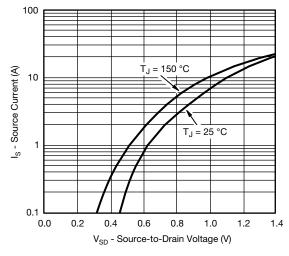


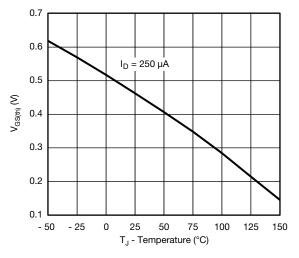
Transfer Characteristics

S15-1510-Rev. B, 29-Jun-15

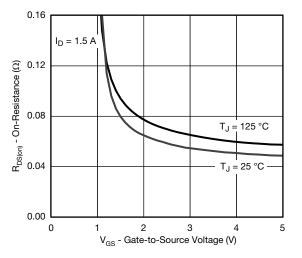
3

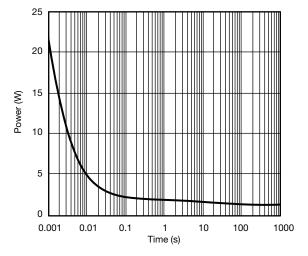
Document Number: 67091

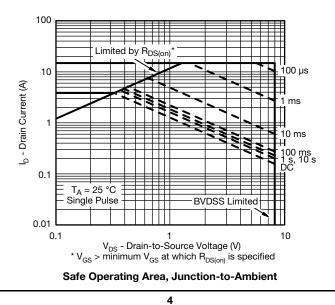

For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


www.vishay.com

Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

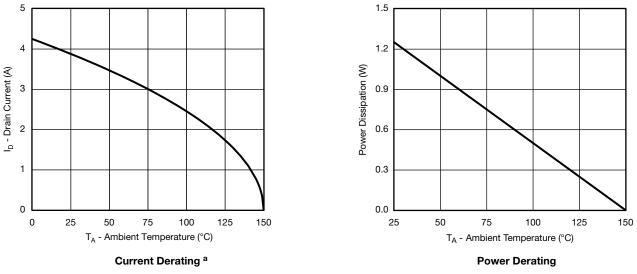

Source-Drain Diode Forward Voltage



On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

S15-1510-Rev. B, 29-Jun-15

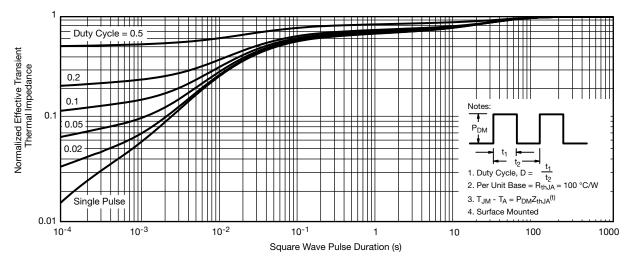

Document Number: 67091

For technical questions, contact: pmostechsupport <u>@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

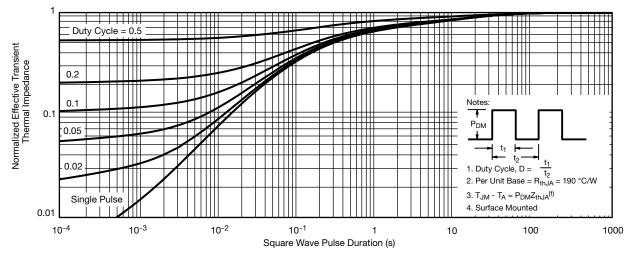
Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

• When mounted on 1" x 1" FR4 with full copper.


Note

a. The power dissipation P_D is based on T_J (max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.



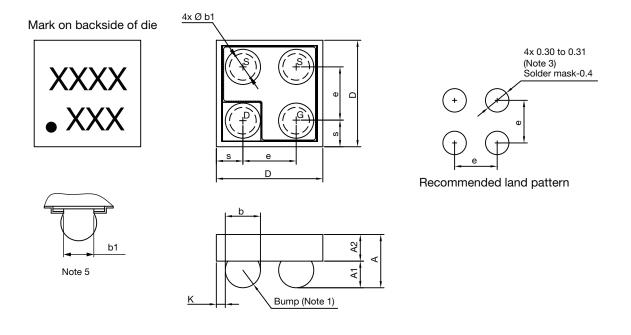
Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient (1" x 1" FR4 Board with Full Copper)

Normalized Thermal Transient Impedance, Junction-to-Ambient (1" x 1" FR4 Board with Minimum Copper)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67091.


6

Package Information

Vishay Siliconix

MICRO FOOT[®]: 4-Bumps (1 mm x 1 mm, 0.5 mm Pitch, 0.286 mm Bump Height)

Notes

- 1. Bumps are 95.5/3.8/0.7 Sn/Ag/Cu.
- 2. Backside surface is coated with a Ti/Ni/Ag layer.
- 3. Non-solder mask defined copper landing pad.
- 4. Laser mark on the backside surface of die.
- 5. "b1" is the diameter of the solderable substrate surface, defined by an opening in the solder resist layer solder mask defined.
- 6. is the location of pin 1

DIM		MILLIMETERS			INCHES		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.458	0.504	0.550	0.0180	0.0198	0.0217	
A1	0.214	0.250	0.286	0.0084	0.0098	0.0113	
A2	0.244	0.254	0.264	0.0096	0.0100	0.0104	
b	0.297	0.330	0.363	0.0117	0.0130	0.0143	
b1		0.250			0.0098		
е		0.500			0.0197		
S	0.210	0.230	0.250	0.0083	0.0091	0.0096	
D	0.920	0.960	1.000	0.0362	0.0378	0.0394	
К	0.029	0.065	0.102	0.0011	0.0026	0.0040	

Note

• Use millimeters as the primary measurement.

ECN: T15-0176-Rev. A, 27-Apr-15 DWG: 6039

Revision: 27-Apr-15

1

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.