

SIHD5N80AE-GE3 Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	SIHD5N80AE-GE3-DG
Manufacturer	Vishay Siliconix
Manufacturer Product Number	SIHD5N80AE-GE3
Description	E SERIES POWER MOSFET DPAK (TO-2
Detailed Description	N-Channel 800 V 4.4A (Tc) 62.5W (Tc) Surface Moun t TO-252AA

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

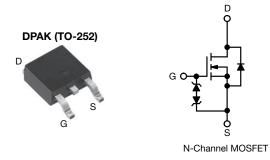
DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:	
SIHD5N80AE-GE3	Vishay Siliconix	
Series:	Product Status:	
E	Active	
FET Type:	Technology:	
N-Channel	MOSFET (Metal Oxide)	
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:	
800 V	4.4A (Tc)	
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:	
10V	1.350hm @ 1.5A, 10V	
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:	
4V @ 250μΑ	16.5 nC @ 10 V	
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:	
±30V	321 pF @ 100 V	
FET Feature:	Power Dissipation (Max):	
	62.5W (Tc)	
Operating Temperature:	Mounting Type:	
-55°C ~ 150°C (TJ)	Surface Mount	
Supplier Device Package:	Package / Case:	
TO-252AA	TO-252-3, DPAK (2 Leads + Tab), SC-63	

Environmental & Export classification

RoHS Status:
ROHS3 Compliant
REACH Status:
REACH Affected
HTSUS:
8541.29.0095


Moisture Sensitivity Level (MSL):
Not Applicable
ECCN:
EAR99

SiHD5N80AE

Vishay Siliconix

E Series Power MOSFET

PRODUCT SUMMARY			
V _{DS} (V) at T _J max.	850		
R _{DS(on)} typ. (Ω) at 25 °C	V _{GS} = 10 V 1.17		
Q _g max. (nC)	16.5		
Q _{gs} (nC)	3		
Q _{gd} (nC)	6		
Configuration	Single		

FEATURES

- Low figure-of-merit (FOM) Ron x Qa
- Low effective capacitance (Ciss)
- · Reduced switching and conduction losses
- Ultra low gate charge (Q_q)
- Avalanche energy rated (UIS)
- Integrated Zener diode ESD protection
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Renewable energy

ORDERING INFORMATION		
Package	DPAK (TO-252)	
Lead (Pb)-free and halogen-free	SiHD5N80AE-GE3	

ABSOLUTE MAXIMUM RATINGS ($T_c = 25 \text{ °C}$, unless otherwise noted)					
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-source voltage			V _{DS}	800	v
Gate-source voltage			V _{GS}	± 30	V
Continuous drain surrant $(T_{\rm e} = 150 ^{\circ}{\rm C})$	V _{GS} at 10 V	$T_{C} = 25 \text{ °C}$ $T_{C} = 100 \text{ °C}$		4.4	
Continuous drain current ($T_J = 150 \ ^\circ C$)	VGS at 10 V	T _C = 100 °C	I _D	2.8	А
Pulsed drain current ^a			I _{DM}	7	
Linear derating factor				0.5	W/°C
Single pulse avalanche energy ^b			E _{AS}	17	mJ
Maximum power dissipation			PD	62.5	W
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +150	°C
Drain-source voltage slope $T_J = 125 \text{ °C}$		du /dt	70	1//22	
Reverse diode dv/dt ^d			dv/dt	0.3	V/ns
Soldering recommendations (peak temperature) ^c For 10 s			260	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature

b. V_{DD} = 140 V, starting T_J = 25 °C, L = 28.2 mH, R_a = 25 Ω , I_{AS} = 1.1 A

c. 1.6 mm from case

d. $I_{SD} \leq I_D$, di/dt = 100 A/µs, starting T_J = 25 °C

S20-0945-Rev. A, 14-Dec-2020

1

Document Number: 92374

COMPLIANT

HALOGEN

FREE

SiHD5N80AE

Vishay Siliconix

THERMAL RESISTANCE RATINGS				
PARAMETER SYMBOL MAX. UNIT				
Maximum junction-to-ambient	R _{thJA}	62	°C/W	
Maximum junction-to-case (drain)	R _{thJC}	2	0/10	

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)							
PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static						•	•
Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 250 μΑ	800	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I _D = 1 mA	-	0.8	-	V/°C
Gate-source threshold voltage (N)	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	2	-	4	V
		,	V _{GS} = ± 20 V	-	-	± 10	μA
Gate-source leakage	I _{GSS}	,	V _{GS} = ± 30 V	-	-	± 50	
Zara gata valtaga drain avreat	I	V _{DS} =	= 800 V, V _{GS} = 0 V	-	-	1	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 640 V	′, V _{GS} = 0 V, T _J = 125 °C	-	-	10	μA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 1.5 A	-	1.17	1.35	Ω
Forward transconductance ^a	g _{fs}	V _{DS}	= 30 V, I _D = 2 A	-	1.2	-	S
Dynamic					-		
Input capacitance	C _{iss}		$V_{GS} = 0 V$,	-	321	-	
Output capacitance	C _{oss}		V _{DS} = 100 V,	-	20	-	
Reverse transfer capacitance	C _{rss}		f = 1 MHz	-	4	-	
Effective output capacitance, energy related ^a	C _{o(er)}		V_{DS} = 0 V to 480 V, V_{GS} = 0 V		14	-	pF
Effective output capacitance, time related ^b	C _{o(tr)}	$v_{\rm DS} = 0$			71	-	
Total gate charge	Qg			-	11	16.5	
Gate-source charge	Q _{gs}	V _{GS} = 10 V	$I_D = 2 \text{ A}, V_{DS} = 640 \text{ V}$	-	3	-	nC
Gate-drain charge	Q _{gd}			-	6	-	
Turn-on delay time	t _{d(on)}			-	12	24	
Rise time	t _r	V _{DD} :	= 640 V, I _D = 2 A,	-	8	16	
Turn-off delay time	t _{d(off)}	V _{GS} =	= 10 V, R_g = 9.1 Ω	-	10	20	ns
Fall time	t _f			-	28	56	
Gate input resistance	R _g	f = 1	MHz, open drain	1.6	3.2	6.4	Ω
Drain-Source Body Diode Characteristic	cs						
Continuous source-drain diode current	١ _S	MOSFET symbol showing the integral reverse p - n junction diode		-	-	4.4	
Pulsed diode forward current	I _{SM}			-	-	7	A
Diode forward voltage	V _{SD}	T _J = 25 °	C, I _S = 2 A, V _{GS} = 0 V	-	-	1.2	V
Reverse recovery time	t _{rr}			-	267	534	ns
Reverse recovery charge	Q _{rr}	$T_J = 25 \text{ °C}, I_F = I_S = 2 \text{ A},$ di/dt = 100 A/µs, V _R = 25 V		-	1.2	2.4	μC
Reverse recovery current	I _{RRM}			-	7.5	-	A

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 V to 480 V V_{DSS}

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 V to 480 V V_{DSS}

SiHD5N80AE

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

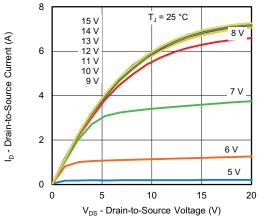


Fig. 1 - Typical Output Characteristics

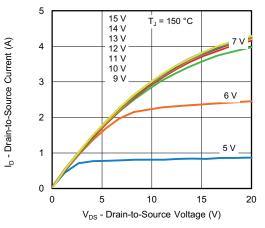


Fig. 2 - Typical Output Characteristics

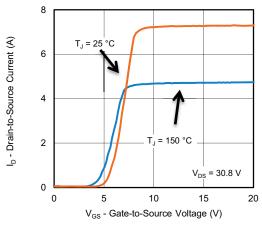


Fig. 3 - Typical Transfer Characteristics

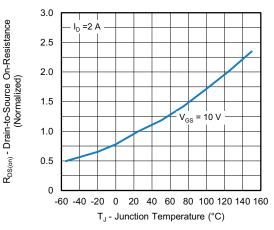


Fig. 4 - Normalized On-Resistance vs. Temperature

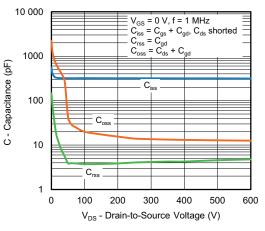
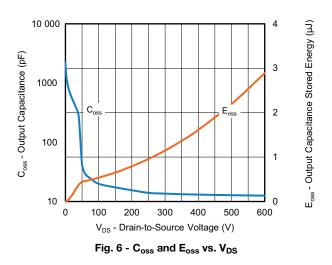



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

S20-0945-Rev. A, 14-Dec-2020

3 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 92374

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

5

4

3

2

1

0

V_{DS} - Drain-to-Source Breakdown Voltage (Normalized)

25

1.2

1.1

1

0.9

0.8

-20

0

-60 -40

50

75

T_C - Case Temperature (°C)

Fig. 10 - Maximum Drain Current vs. Case Temperature

100

125

I_D = 250uA

20 40 60 80 100 120 140 160

T_J - Junction Temperature (°C)

Fig. 11 - Normalized Breakdown Voltage vs. Temperature

150

l_D - Drain Current (A)

www.vishay.com

SiHD5N80AE

Vishay Siliconix

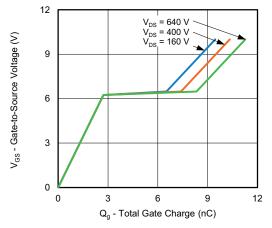


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

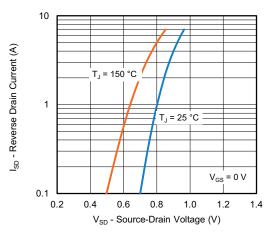


Fig. 8 - Typical Source-Drain Diode Forward Voltage

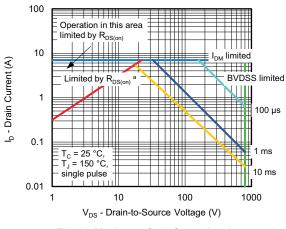


Fig. 9 - Maximum Safe Operating Area

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

www.vishay.com

SiHD5N80AE

Vishay Siliconix

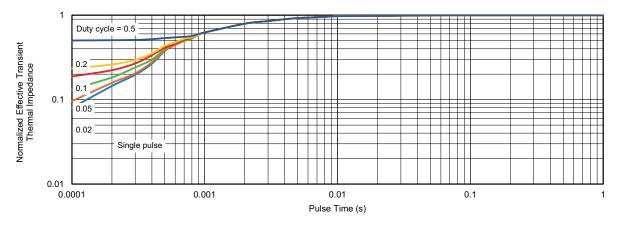


Fig. 12 - Normalized Transient Thermal Impedance, Junction-to-Case

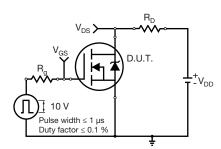


Fig. 13 - Switching Time Test Circuit

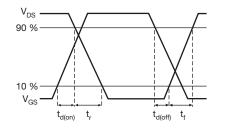


Fig. 14 - Switching Time Waveforms

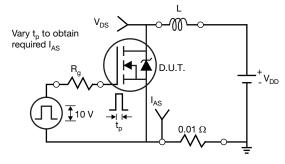


Fig. 15 - Unclamped Inductive Test Circuit

S20-0945-Rev. A, 14-Dec-2020

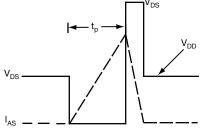


Fig. 16 - Unclamped Inductive Waveforms

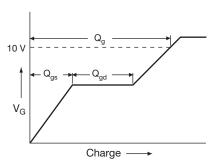
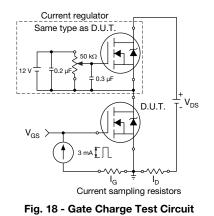
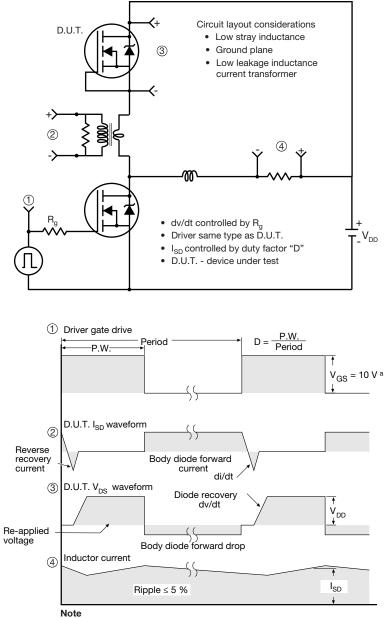



Fig. 17 - Basic Gate Charge Waveform

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



www.vishay.com

SiHD5N80AE

Vishay Siliconix

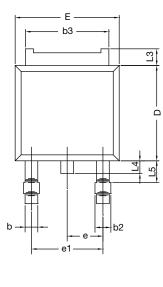
a. $V_{GS} = 5$ V for logic level devices

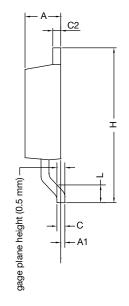
Fig. 19 - For N-Channel

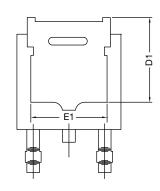
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?92374.

6

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>




Package Information


Vishay Siliconix

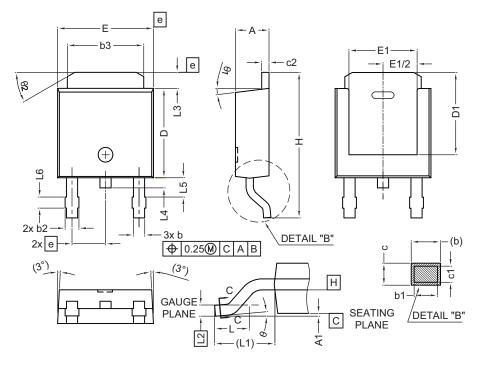
TO-252AA Case Outline

VERSION 1: FACILITY CODE = Y

	MILLIMETERS		
DIM.	MIN.	MAX.	
А	2.18	2.38	
A1	-	0.127	
b	0.64	0.88	
b2	0.76	1.14	
b3	4.95	5.46	
С	0.46	0.61	
C2	0.46	0.89	
D	5.97	6.22	
D1	4.10	-	
E	6.35	6.73	
E1	4.32	-	
Н	9.40	10.41	
е	2.28	BSC	
e1	4.56	BSC	
L	1.40	1.78	
L3	0.89	1.27	
L4	-	1.02	
L5	1.01	1.52	

Note

• Dimension L3 is for reference only



www.vishay.com

Package Information

Vishay Siliconix

VERSION 2: FACILITY CODE = N

	MILLIMETERS		
DIM.	MIN.	MAX.	
A	2.18	2.39	
A1	-	0.13	
b	0.65	0.89	
b1	0.64	0.79	
b2	0.76	1.13	
b3	4.95	5.46	
с	0.46	0.61	
c1	0.41	0.56	
c2	0.46	0.60	
D	5.97	6.22	
D1	5.21	-	
E	6.35	6.73	
E1	4.32	-	
e	2.29 BSC		
Н	9.94	10.34	

	MILLIMETERS		
DIM.	MIN.	MAX.	
L	1.50	1.78	
L1	2.74	ref.	
L2	0.51	BSC	
L3	0.89	1.27	
L4	-	1.02	
L5	1.14	1.49	
L6	0.65	0.85	
θ	0°	10°	
θ1	0°	15°	
θ2	25° 35°		

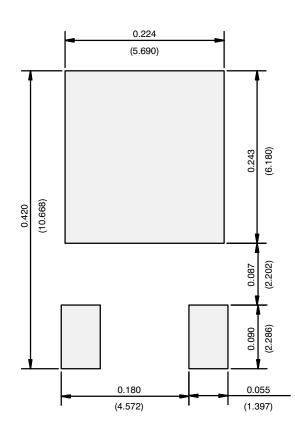
Notes

• Dimensioning and tolerance confirm to ASME Y14.5M-1994

• All dimensions are in millimeters. Angles are in degrees

• Heat sink side flash is max. 0.8 mm

Radius on terminal is optional


ECN: E22-0399-Rev. R, 03-Oct-2022 DWG: 5347

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.