

SQJQ960EL-T1_GE3 Datasheet

www.digi-electronics.com

Man

DiGi Electronics Part Number	SQJQ960EL-T1_GE3-DG
Manufacturer	Vishay Siliconix
Manufacturer Product Number	SQJQ960EL-T1_GE3
Description	MOSFET 2N-CH 60V 63A PPAK8X8
Detailed Description	Mosfet Array 60V 63A (Tc) 71W Surface Mount Pow erPAK® 8 x 8 Dual

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

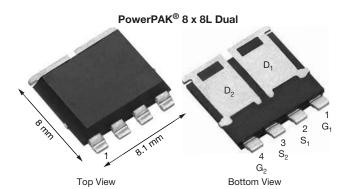
DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
SQJQ960EL-T1_GE3	Vishay Siliconix
Series:	Product Status:
TrenchFET*	Active
Technology:	Configuration:
MOSFET (Metal Oxide)	2 N-Channel (Dual)
FET Feature:	Drain to Source Voltage (Vdss):
	60V
Current - Continuous Drain (Id) @ 25°C:	Rds On (Max) @ ld, Vgs:
63A (Tc)	9mOhm @ 10A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
2.5V @ 250µA	24nC @ 10V
Input Capacitance (Ciss) (Max) @ Vds:	Power - Max:
1950pF @ 25V	71W
Operating Temperature:	Grade:
-55°C ~ 175°C (TJ)	Automotive
Qualification:	Mounting Type:
AEC-Q101	Surface Mount
Package / Case:	Supplier Device Package:
PowerPAK [®] 8 x 8 Dual	PowerPAK [®] 8 x 8 Dual
Base Product Number:	
SQJQ960	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
ECCN:	HTSUS:
EAR99	8541.29.0095

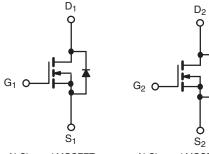


www.vishay.com

SQJQ960EL

Vishay Siliconix

Automotive Dual N-Channel 60 V (D-S) 175 °C MOSFET


PRODUCT SUMMARY 60 V_{DS} (V) $R_{DS(on)}(\Omega)$ at $V_{GS} = 10 V$ 0.009 $R_{DS(on)}$ (Ω) at V_{GS} = 4.5 V 0.013 63 I_D (A) per leg Configuration Dual PowerPAK 8 x 8L Package

FEATURES

- TrenchFET[®] power MOSFET
- AEC-Q101 qualified
- 100 % R_q and UIS tested
- Fully lead (Pb)-free device
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS COMPLIANT HALOGEN FREE

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _C :	= 25 °C, unles	s otherwise notec	l)	
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-source voltage		V _{DS}	60	V
Gate-source voltage		V _{GS}	± 20	v
Continuous drain current	$T_C = 25 \ ^\circ C \ ^a$	Ŀ	63	
Continuous drain current	T _C = 125 °C	۱ _D	36	
Continuous source current (diode conduction) ^a		I _S	50	А
Pulsed drain current ^b	I _{DM}	200		
Single pulse avalanche current	L = 0.1 mH	I _{AS}	26	
Single pulse avalanche energy		E _{AS}	34	mJ
Maximum power dissipation ^b	T _C = 25 °C	P	71	W
Maximum power dissipation ~	T _C = 125 °C	P _D	24	٧V
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +175	°C
Soldering recommendations (peak temperature) ^{d, e}			260	

THERMAL RESISTANCE RATINGS				
PARAMETER		SYMBOL	LIMIT	UNIT
Junction-to-ambient	PCB mount ^c	R _{thJA}	75	°C/W
Junction-to-case (drain)		R _{thJC}	2.1	C/W

Notes

- a. Package limited
- b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %

c. When mounted on 1" square PCB (FR4 material)

d. See solder profile (www.vishay.com/doc?73257). The PowerPAK 8 x 8L is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components

1

www.vishay.com

SQJQ960EL

Vishay Siliconix

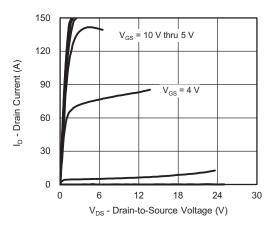
SPECIFICATIONS (T _C = 25 °C	, unless otherw	/ise noted)					
PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static					•		
Drain-source breakdown voltage	V _{DS}	V _{GS}	= 0, I _D = 250 μA	60	-	-	v
Gate-source threshold voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μA	1.5	2	2.5	V
Gate-source leakage	I _{GSS}	V _{DS} =	: 0 V, V _{GS} = ± 20 V	-	-	± 100	nA
		$V_{GS} = 0 V$	V _{DS} = 20 V	-	-	1	
Zero gate voltage drain current	I _{DSS}	$V_{GS} = 0 V$	V _{DS} = 60 V, T _J = 125 °C	-	-	50	μA
		$V_{GS} = 0 V$	V _{DS} = 60 V, T _J = 175 °C	-	-	150	1
On-state drain current ^a	I _{D(on)}	$V_{GS} = 10 V$	$V_{DS} \ge 5 V$	40	-	-	Α
		V _{GS} = 10 V	I _D = 10 A	-	0.0070	0.0090	
During a summer any state maniatement of		$V_{GS} = 4.5 V$	I _D = 7 A	-	0.0092	0.0130	Ω
Drain-source on-state resistance ^a	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A, T _J = 125 °C	-	-	0.0145	
		V _{GS} = 10 V	l _D = 10 A, T _J = 175 °C	-	-	0.0180	
Forward transconductance b		V _{DS} = 15 V, I _D = 10 A		-	55	-	S
Dynamic ^b					•		•
Input capacitance	C _{iss}		V _{DS} = 25 V, f = 1 MHz	-	1560	1950	pF
Output capacitance	C _{oss}	$V_{GS} = 0 V$		-	771	964	
Reverse transfer capacitance	C _{rss}			-	87	108	1
Total gate charge ^c	Qg			-	19	24	
Gate-source charge ^c	Q _{gs}	$V_{GS} = 10 V$	$V_{DS} = 30 \text{ V}, I_D = 10 \text{ A}$	-	4	-	nC
Gate-drain charge ^c	Q _{gd}			-	2	-	
Gate resistance	Rg		f = 1 MHz		1.6	2.6	Ω
Turn-on delay time ^c	t _{d(on)}			-	10	14	
Rise time ^c	t _r	$\label{eq:VDD} \begin{array}{l} V_{DD}=30 \text{ V}, \text{ R}_L=4 \ \Omega \\ I_D\cong 10 \text{ A}, \text{ V}_{GEN}=10 \text{ V}, \text{ R}_g=1 \ \Omega \end{array}$		-	3	5	1
Turn-off delay time ^c	t _{d(off)}			-	22	28	ns
Fall time ^c	t _f			-	3	5	1
Source-Drain Diode Ratings and Cha	racteristics ^b	•					
Pulsed current ^a	I _{SM}			-	-	200	Α
Forward voltage	V _{SD}	IF	= 20 A, V _{GS} = 0	-	1	1.2	V

Notes

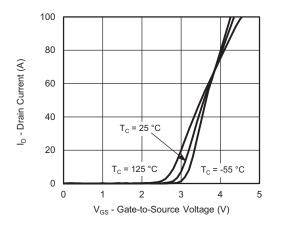
a. Pulse test; pulse width $\leq 300~\mu\text{s},$ duty cycle $\leq 2~\%$

b. Guaranteed by design, not subject to production testing

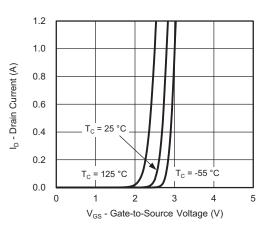
c. Independent of operating temperature

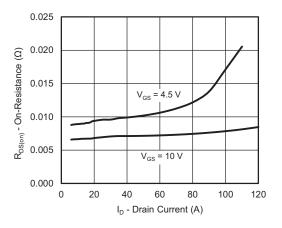

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

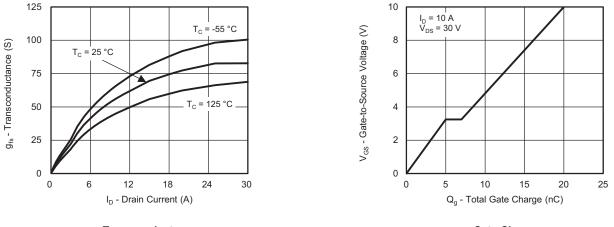
2



Vishay Siliconix


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


Output Characteristics


Transfer Characteristics

Transfer Characteristics

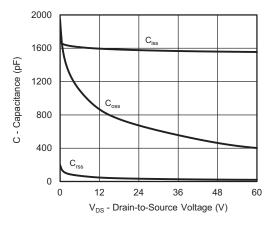
On-Resistance vs. Drain Current

Transconductance

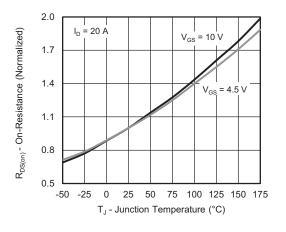
Gate Charge

S17-0463-Rev. A, 27-Mar-17

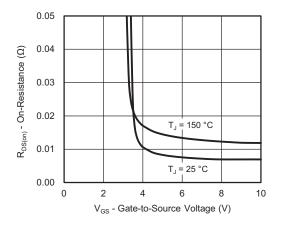
3

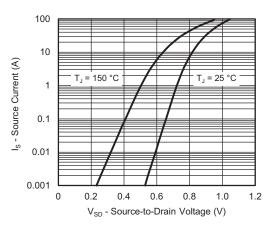

Document Number: 76020

For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

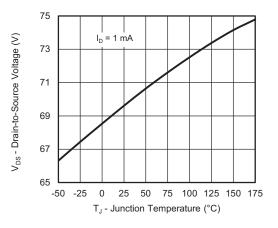


Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


Capacitance


On-Resistance vs. Junction Temperature

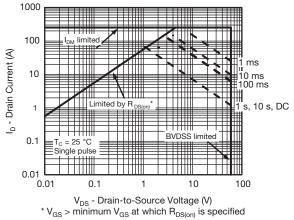

On-Resistance vs. Gate-to-Source Voltage

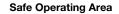
Source Drain Diode Forward Voltage

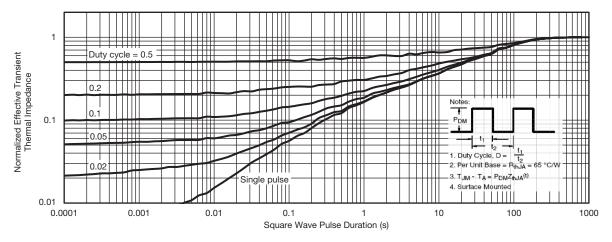
Threshold Voltage

Drain Source Breakdown vs. Junction Temperature

S17-0463-Rev. A, 27-Mar-17

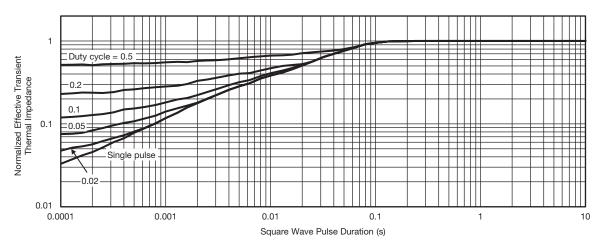

4 lestions contact: automostechsuppor Document Number: 76020


For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



Vishay Siliconix

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)


Normalized Thermal Transient Impedance, Junction-to-Ambient

Vishay Siliconix

Document Number: 76020

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case

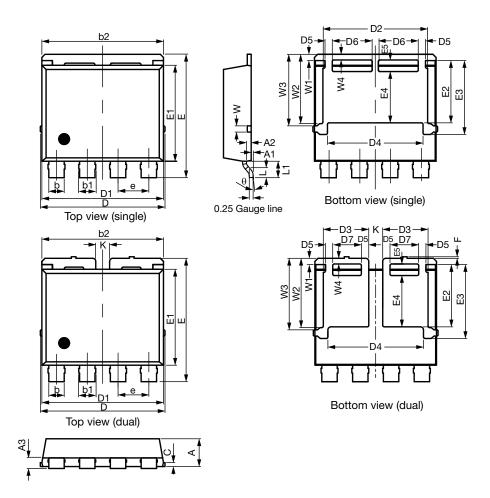
Note

• The characteristics shown in the two graphs

S17-0463-Rev. A, 27-Mar-17

- Normalized Transient Thermal Impedance Junction to Ambient (25 °C)
- Normalized Transient Thermal Impedance Junction to Case (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?76020.

Package Information

Vishay Siliconix

PowerPAK[®] 8 x 8L Case Outline

DIM	MILLIMETERS			INCHES		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
А	1.70	1.80	1.90	0.067	0.071	0.075
A1	0.00	0.08	0.13	0.000	0.003	0.005
A2	0.25	0.30	0.35	0.010	0.012	0.014
A3	0.55	0.62	0.70	0.022	0.024	0.028
b	0.92	1.00	1.08	0.036	0.039	0.043
b1	1.02	1.10	1.18	0.040	0.043	0.046
b2	7.80	7.90	8.00	0.307	0.311	0.315
С	0.20	0.25	0.30	0.008	0.010	0.012
D	8.00	8.10	8.25	0.315	0.319	0.325
D1	7.80	7.90	8.00	0.307	0.311	0.315
D2	6.70	6.80	6.90	0.264	0.268	0.272
D3	2.85	2.95	3.05	0.112	0.116	0.120
D4	6.11	6.21	6.31	0.241	0.244	0.248
D5	0.37	0.47	0.57	0.015	0.019	0.022
D6	2.49	2.59	2.69	0.098	0.102	0.106
D7	1.76	1.86	1.96	0.069	0.073	0.077

Revision: 16-Oct-17

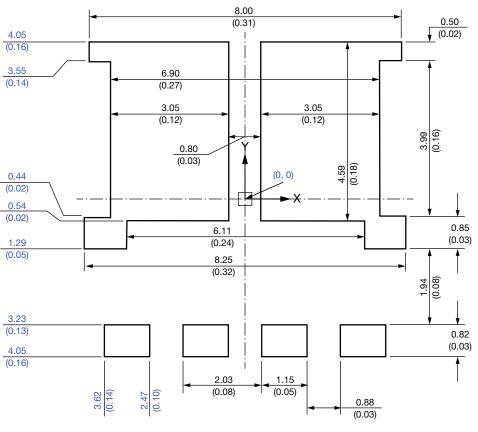
Document Number: 67734

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Package Information

www.vishay.com

Vishay Siliconix


DIM		MILLIMETERS		INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
е	1.95	2.00	2.05	0.077	0.079	0.081	
E	7.90	8.00	8.10	0.311	0.315	0.319	
E1	6.12	6.22	6.32	0.241	0.245	0.249	
E2	3.94	4.04	4.14	0.140	0.159	0.163	
E3	4.69	4.79	4.89	0.185	0.189	0.193	
E4	3.23	3.33	3.43	0.127	0.131	0.135	
E5	0.65	0.75	0.85	0.026	0.030	0.033	
F	0.00	0.10	0.15	0.000	0.004	0.006	
L	0.62	0.72	0.82	0.024	0.028	0.032	
L1	0.92	1.07	1.22	0.036	0.042	0.048	
К	0.80	0.90	1.00	0.031	0.035	0.039	
W	0.30	0.40	0.50	0.012	0.016	0.020	
W1	0.30	0.40	0.50	0.012	0.016	0.020	
W2	4.39	4.49	4.59	0.173	0.177	0.181	
W3	4.54	4.64	4.74	0.179	0.183	0.187	
W4	0.32	0.37	0.42	0.013	0.015	0.017	
θ	6°	10°	14°	6°	10°	14°	

PAD Pattern

Vishay Siliconix

Recommended Minimum PADs for PowerPAK[®] 8 x 8L Dual

Dimensions in millimeters (inches)

Note

• Linear dimensions are in black, the same information is provided in ordinate dimensions which are in blue.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.