

IMC1008ER47NJ Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number IMC1008ER47NJ-DG

Manufacturer Vishay Dale

Manufacturer Product Number IMC1008ER47NJ

Description FIXED IND 47NH 1A 100 MOHM SMD

Detailed Description 47 nH Unshielded Drum Core, Wirewound Inductor

1 A 100mOhm Max 1008 (2520 Metric)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
IMC1008ER47NJ	Vishay Dale
Series:	Product Status:
IMC-1008	Active
Type:	Material - Core:
Drum Core, Wirewound	Ceramic
Inductance:	Tolerance:
47 nH	±5%
Current Rating (Amps):	Current - Saturation (Isat):
1 A	
Shielding:	DC Resistance (DCR):
Unshielded	100mOhm Max
Q @ Freq:	Frequency - Self Resonant:
60 @ 350MHz	1.5GHz
Ratings:	Operating Temperature:
	-40°C ~ 125°C
Inductance Frequency - Test:	Mounting Type:
100 MHz	Surface Mount
Package / Case:	Supplier Device Package:
1008 (2520 Metric)	1008 (2520 Metric)
Size / Dimension:	Height - Seated (Max):
0.098" L x 0.079" W (2.50mm x 2.00mm)	0.075" (1.90mm)

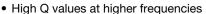
Environmental & Export classification

8504.50.8000

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

www.vishay.com

Vishay Dale


High Frequency, Surface Mount Inductors

STA	NDAF			RICAL	SPEC	IFIC/	ATIONS	
IND. (nH)	TOL.	(M	FREQ. Hz) Q	Q MIN.	SRF MIN. (MHz)	DCR MAX. (Ω)	RATED DC CURRENT (mA)	
3.3 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 750 820 910 1200 1500 1200 1200 1200 1500 1200 1500 1200 1500 1200 1500 1200 1500 1200 1500 1200 1500 15	Ħ Ħ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	100 100 100 100 100 100 100 100 100 100	1000 1000 1000 1000 1000 500 350 350 350 350 350 350 100 100 100 100 100 100 100 100 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96	50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	5500 5500 5500 4300 2700 2700 2500 1700 1500 1350 1100 950 880 650 570 530 480 430 360 360 370 530 480 430 360 370 480 430 360 370 480 480 480 480 480 480 480 48	0.06 0.06 0.06 0.08 0.08 0.10 0.10 0.10 0.10 0.12 0.15 0.18 0.20 0.22 0.33 0.45 0.75 0.90 1.17 1.50 2.20 2.30 3.18 3.18 2.20 2.30 2.85 4.30 4.50 4.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6	1000 1000 1000 1000 1000 1000 1000 100	

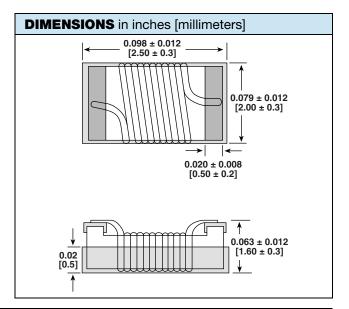
FEATURES

High self-resonant frequency values

• Wirewound construction

COMPLIANT

- · Compatible with vapor phase and infrared reflow soldering
- Tape and reel packaging for automatic handling, 2000/reel
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912


ELECTRICAL SPECIFICATIONS

Inductance Range: 3.3 nH to 47 000 nH Inductance and Tolerance: 0.3 nH for 3.3 nH ± 5 % for 6.8 nH to 47 000 nH

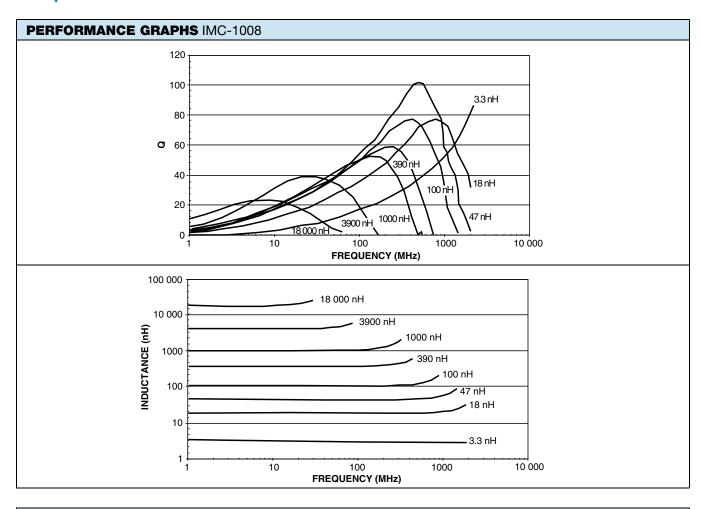
Operating Temperature: -40 °C to +125 °C Core Material: Ceramic from 3.3 nH to 1000 nH Ferrite from 1200 nH to 47 000 nH

TEST EQUIPMENT

- Inductance and Q measured on HP4286A
- SRF measured on HP8753D

DESCRIPTION	ON			
IMC-1008	10 nH	± 5 %	ER	e4 ⁽¹⁾
MODEL	INDUCTANCE VALUE	INDUCTANCE TOLERANCE	PACKAGE CODE	JEDEC® LEAD (Pb)-FREE STANDARD

Note


(1) For parts within 3.3 nH to 910 nH please use e4 for JEDEC lead (Pb)-free standard. For parts within 1000 nH to 47 000 nH please use e3 for JEDEC lead (Pb)-free standard.

GLOBAL PART NUMBER							
PRODUCT FAMILY	1 0 0 8 SIZE	PACKAGE CODE	1 0 N INDUCTANCE VALUE	J TOL.			

www.vishay.com

Vishay Dale

TAPE AND REEL SPECIFICATIONS in inches [millimeters]									
7	0.08 ± 0.02 2.0 ± 0.5]	$ \begin{array}{c} 0.07 \pm 0.002 \\ [1.75 \pm 0.05] \\ \hline 0.14 \pm 0.002 & 0.158 \pm 0.004 & 0.08 \pm 0.002 \\ [3.5 \pm 0.05] & 4.0 \pm 0.012 & 0.1 \pm 0.002 \\ [3.5 \pm 0.05] & 4.0 \pm 0.05 & 0.05 \\ \hline 0.315 \pm 0.008 & 4.0 \pm 0.004 \\ [8.0 \pm 0.2] & 4.0 \pm 0.004 \\ \hline 0.158 \pm 0.004 & 0.15 \\ [4.0 \pm 0.1] & 1.0 \pm 0.002 \\ \hline 0.158 \pm 0.004 & 1.0 \pm 0.002 \\ \hline 0.158 $				RECOMMENDE	D PATTERN B — ← A —	*	↑ 0 ↓
MODEL	UNITS PER REEL	MODEL	Α	В	T	MODEL	Α	В	С
IMC-1008	2000	IMC-1008	0.087 [2.20]	0.110 [2.80]	0.071 [1.80]	IMC-1008	0.047 [1.20]	0.150 [3.80]	0.100 [2.54]

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com